STRUCTURAL LIGHTWEIGHT AGGREGATE CONCRETE

V/ & 20

Edited by

JOHN L. CLARKE Chief Structural Engineer British Cement Association Crowthorne Berkshire

> ้ Institut f. Massivไอดน der Techn. Hochschule มีอยาระสองไป

Inv.-Nr. 9305

BLACKIE ACADEMIC & PROFESSIONAL

An Imprint of Chapman & Hall London · Glasgow · New York · Tokyo · Melbourne · Madras

Contents

1	Lig P. I	ntweight aggregates for structural concrete	1
	1.1	Introduction, definitions and limitations	1
	1.2	Lightweight aggregates suitable for use in structural concrete	2
	1.3	Brief history of lightweight aggregate production	3
	1.4	Manufacturing considerations for structural grades of lightweight	
		aggregate	5
		1.4.1 The investment	5
		1.4.2 The resource materials	5
		1.4.3 The various processes of lightweight aggregate manufacture	6
	15	1.4.4 The techniques of production	07
	1.5	Production methods used for the various lightweight aggregates	7
	1.0	1.6.1 Foamed slag	7
		1.6.2 Leca and Fibo	8
		1.6.3 Lytag	10
		1.6.4 Pellite	12
		1.6.5 Granulex and Liapor	12
	1.7	The future	. 14
	1.8	Conclusions	17
	Ref	erences	17
		j.	
2	Pro J. E	operties of structural lightweight aggregate concrete 3. NEWMAN	19
	2.1	Introduction	19
	2.2	Properties of lightweight aggregate for structural concrete	20-
	2.3	Properties of structural lightweight aggregate concrete	22
		2.3.1 Fresh concrete	22
		2.3.2 Density	23
		2.3.5 Strength/density ratio	29
		2.3.5 Impact	31
		2.3.6 Deformation	31
		2.3.7 Bond and anchorage	33
		2.3.8 Fatigue	34
		2.3.9 Durability	34
		2.3.10 Thermal behaviour	37
		2.3.11 Acoustic behaviour	39
		2.3.12 Fire resistance	39
	2.4	Experience in use	40
	Ref	erences	41

viii

CONTENTS

H

4.

4

4

4

4.

4.8 4.9 A

5.1 5.2

5.4

5 Li D

2010

• 11	.1	CONTENTS	
3	Des	ion requirements	45
5	TI	CLADE	••
	J. L	, CLARKE	
	2 1	Browinian for lightweight aggregate concrete in codes	45
	5.1	3.1.1 Introduction	45
		3.1.2 British codes	46
		3.1.2 American codes	48
		3.1.4 Norwegian code	48
		3.1.5 European code	48
		3.1.6 Australian code	49
		3.1.7 Japanese specifications	49
	32	Design requirements for reinforced concrete	49
	0.2	3.2.1 Introduction	49
		3.2.2 Definition of lightweight concrete	50
		3.2.3 Limitations on compressive strength	50 ⁻
		3.2.4 Cover to reinforcement	51
		3.2.5 Fire	53
		3.2.6 Flexure	55
		3.2.7 Shear resistance of beams	55
		3.2.8 Torsion	60
		3.2.9 Deflections	61
		3.2.10 Shear of slabs	63
		3.2.11 Columns	63
		3.2.12 Walls	64
		3.2.13 Detailing of reinforcement	64
	3.3	Design requirements for prestressed concrete	66
		3.3.1 Introduction	66
		3.3.2 Cover to reinforcement for durability and fire	66
		3.3.3 Service and transfer conditions	67
		3.3.4 Shear of beams	67
		3.3.5 Prestress losses	68
		3.3.6 Transmission length	69
	3.4	Thermal effects	69
		3.4.1 Early thermal cracking during construction	69 70
	~ ~	3.4.2 Thermal movements in mature concrete	70
	3.5	Overall design implications	/1
		3.5.1 Introduction	/1
		3.5.2 Cover to reinforcement	72 70 ×
		3.5.3 Flexure	72
		3.5.4 Shear of deams	72
		3.5.5 Shear of stads	72
		3.5.0 Denections	72
		3.5.7 Columns	73
		3.5.0 Detailing	73
	Def	2.5.5 Trestressed concrete	73
	KU	ciclices	10
	~	· · · ·	7C
4	Co	nstruction	/3
	R.	N. W. PANKHURST	
	4.1	Introduction	75
		4.1.1 Historical background	75 🔮
		4.1.2 Lightweight aggregate in concrete	76
	4.2	Supply of lightweight aggregate	78
		4.2.1 Bulk density and moisture content	78
		4.2.2 Controlling moisture content	79

CONTENTS

4.3	Mix designs	80
	4.3.1 Introduction	80
	4.3.2 Lightweight fines	81
	4.3.3 Pumped concrete	81
	4.3.4 Mix designs for pumping	82
4.4	Batching	83
	4.4.1 Aggregate proportion	83
	4.4.2 Mixing	84
	4.4.3 Yield	85
4.5	Pumping	86
	4.5.1 Developments in pumping practice	86
	4.5.2 Pumping for high-rise buildings	88
	4.5.3 Canary Wharf trials and experience	89
	4.5.4 Recommendations for pumping	91
4.0	Placing, compaction and finishes	93
	4.6.1 Formed finishes	93
	4.6.2 Floor stabs	93
	4.6.4 Bower floating	94
	4.6.4 Power noating	94
	4.6.5 Computer noors	95
	4.0.0 Weather 4.6.7 Vacuum de watering	93
47	4.0.7 Vacuum uc-watching	97
4.7	4.7.1 Strength	97
	4.7.1 Strength 4.7.2 Workability	97 0 7
	4.7.3 Testing for density	97
	4.7.5 Testing for density 4.7.4 In-situ strength testing	90
	4.7.5 Performance in fire	00
	4.7.5 Fixing into lightweight aggregate concrete	100
	4.7.7 Making good lightweight aggregate concrete	100
	4.7.8 Productivity	100
4.8	Economics	100
4.9	Conclusions	101
Apr	bendix	104
		104
T in	ktursiakt opponets in kuildings	107
	inweight concrete in buildings	100
D .	LAZARUS	
51	Introduction	106
5.1	5.1.1 General	100
	5.1.1 General	100
52	Factors in the selection of lightweight aggregate concrete	107
5.2	5.2.1 Introduction	107
	5.2.2 Durability	107
	5.2.3 Fire	108
	5.2.4 High-strength concrete	100
	5.2.5 Placing lightweight aggregate concrete	110
	5.2.6 Slipforming	111
	5.2.7 Finishes	112
	5.2.8 Finishing	112
5.3	Applications of lightweight aggregate concrete	112
-	5.3.1 In-situ concrete structures	113

5.3.2	Composite slabs with profiled metal decking
5.3.3	Precast units
	NI I I

5.3.4 Blockwork

	5.3.5 Returbishment
5.4	Economics of lightweight aggregate concrete in buildings

ix

CON	ENTS
-----	------

	5.4.1 Introduction	143
	5.4.2 The Concrete Society study	143
	5.4.3 Other information	145
	5.4.4 The selection of lightweight aggregate concrete	148
	References	148
6	Lightweight concrete in bridges	150
	J. H. J. MANHOUDT	
	6.1 Introduction	150
	6.2 Why use lightweight concrete in bridges?	150
	6.3 Types of aggregates used for bridges	152
	6.4 Advantages and disadvantages	153
	6.5 Recent research	155
	6.6 Recommendations for applications in bridges	150
	6.7 Examples of bridge structures	157
	6.7.1 Koningspieljorug, a orige near Armient, tie Netherlands	167
	6.7.2 Bridge at Ringway (ring road) near Ulft, the Netherlands	162
	6.7.4 Bridge over the river Sinigo at Avelengo (Bolzano). Italy	164
	6.7.5 The Friarton Bridge in Scotland	165
	6.7.6 Refurbishment and upgrading	166
	6.8 Summary and conclusions	166
	References	166
7	Lightweight concrete for special structures	168
•	B. K. BARDHAN-ROY	
	7.1 Introduction	168
	7.2 Concrete quality	169
	7.3 Examples of applications	170
	7.3.1 Marine and offshore structures	170
	7.3.2 Onshore structures	179
	References	193
A	ppendix 1	195
	Design of a road bridge using standard prestressed M beams in lightweight	
	aggregate concrete	
A	ppendix 2	219
,		
	lightweight concrete	
A	ppendix 3	229
	Design of lightweight concrete prestressed double-T unit construction for 4 hours' fire resistance	
Ir	ndex	237

х