CONTENTS

VOLUME 32

A HISTORY OF BIOCHEMISTRY

Part IV. Early Studies on Biosynthesis

General Preface	vii
Preface to section VI	viii
List of Plates	xvii
Errata (Volume 31)	xx

Introduction

Chapter 40. The Aerial Nutrition of Plants

1.	Plants and the atmosphere	11
2.	Discovery of the fact that the life of an animal as well as the	
	flame of a candle or of a lamp are extinguished by removal of	
	air	13
3.	Black's "fixed air" and its physiological properties	13
4.	Exchanges between plants and atmospheric air	18
5.	Priestley discovers that plants, contrary to animals, do not make	
	the air noxious, and that plants restore noxious air	19
6.	Pringle and the hygienic notion of the "goodness of air"	23
7.	First suggestion that "fixed air" is a food for plants	24
8.	Priestley's green matter	26
9.	Joint action of light and vegetation in the maintenance of the	
	atmosphere (Ingen-Housz)	27
10.	The contributions of Sénebier	33
11.	Conceptual evolution of Ingen-Housz	37
12.	The contribution of de Saussure	41
13.	Opposition to the concept of the aerial nutrition of plants	45
14.	Photosynthesis and respiration	45

1

15.	Atmospheric carbon dioxide recognized as the only carbon	
	source of the organic matter of green plants	46
16.	Theories of the origin of plant nitrogen	46
17.	Increase of soil nitrogen after legume cultivation	47
18.	Return to a search for atmospheric ammonia (1854-1856) and	
	demise of the ammonia theory	50
19.	If plant nitrogen does not come from atmospheric ammonia,	
	where does it come from?	50
20.	Soil as a chemical system	55
21.	Nitrification as a bacterial process	59
22.	The discovery of nitrogen-fixing bacteria in the soil	59
23.	The special case of legumes	60
24.	Retrospect	60
Ref	erences	62

Chapter 41. From Vegetable Food to Animal Flesh

1.	Globulist (globularist) theories of tissue structure and tissue for-	., ·
	mation	65
2.	Blood coagulation considered as necessary to tissue formation	67
3.	Dismissal of globulism	73
4.	Schleiden's "cell theory"	77
5.	Schwann's cytoblastema	78
6.	The chemical concept of "molecule" introduced in biogenesis	79
7.	Plants considered as synthesizers for animals	80
Re	ferences	85

Chapter 42. Animals Recognized as Synthesizers

			~-
	1.	The chemical balance (statics) of organic nature	87
	2.	Liebig and agricultural chemistry	91
	3.	The so called "Gelatin Commission"	93
	4.	The controversy between chemists concerning the ability of ani-	
,		mals to synthesize fats	96
	5.	Payen joins with Dumas	99
	6.	Recurrence of nitrogen as a testimonial of animal nature	100
	7.	Plant fats and animal fats compared	100
	8.	Emphasis shifted from the opposition of animals and plants to	
		possible precursors of fats in animals	101
	9.	Objections of the physiologists	103
1	0.	Discovery of a transformation, by organisms, from one category	
		of chemical compounds to another category	104
1	1.	Reaction of Payen, Dumas and Liebig	105
1	2.	The sources of bees' wax	107

х

 13. Observations on geese by Persoz
 108

 14. Experiments of Boussingault on pigs
 109

 References
 112

Chapter 43. Aspects, in the Field of Biosynthesis, of the Theory of "Protoplasm"

1.	"Living albuminoids"	115
2.	Synthesis of "living albuminoid" ("lebendiges Eiweiss") from	
	alimentary albuminoid ("Nahrungseiweiss"), according to Pflüger	116
3.	Intellectual sources of Pflüger's biochemical philosophy	117
4.	Variations on Pflüger's theme	119
5.	Loew's theory of the polycondensation of aminoaldehydes into	
	energy-rich proteins	121
6.	The protoplasmic gel	123
7.	Bernard's "vital creation"	125
8.	Retrospect	126
Re	ferences	131

Chapter 44. Crystallization and Biosynthesis

1. Crystallization as an overgeneralization	133		
2. Cell formation compared to a crystallisation	135		
3. The "micellae" of Nägeli	139		
. Bernard's comparisons between mineral forms and living forms			
5. Possibility of a crystal as an ancestor of the living organisms .	142		
References	143		

Chapter 45. Biosynthesis Considered by Plant Chemists

I. Studies in Photosynthésis

1.	Guessing on the basis of organic chemistry	145			
	(a) Hexose sugars as first products	145			
	(b) Intermediate products	145			
	(c) The formaldehyde theory	147			
	(d) Forms of the formaldehyde theory	148			
2.	Evidence in favour of the theory, based on the formation of for-				
	maldehyde in different model systems	148			
	(a) Systems containing carbon dioxide and water				
	(b) Systems containing carbon dioxide, water and chlorophyll	148			

xi

3.	Biochemical approaches based on the formaldehyde theory	$149 \\ 149$
	(b) Feeding plants with formaldehyde	149
	(c) Alleged photosynthesis in vitro	150
	(d) Experiments with dimedon	151
4.	Theories inspired by biocolloidology	151
	II. Amino Acids Recognized as Precursors of Proteins and of Amides in an Appropriate Biological System (Plant Seedlings)	
$\frac{1}{2}$.	Asparagine in the seedlings of <i>Papilionaceae</i>	153
	tion of protein reserves	155
3.	Recognition of aspartic acid as a constituent of plant proteins	156
4.	First suggestions of the presence of amino acids as such in the	
	structure of albuminous compounds	159
5.	Arguments in favour of the presence of amides in proteins	159
6.	Enzymatic liberation of amino acids in seedlings and their use for	
	protein biosynthesis, as suggested by Gorup-Besanez	163

	protein biosynthesis, as suggested by Gorup-Desanez	100
7.	Schulze's contributions	165
8.	Glutamine as secondary product of seedling metabolism	169
9.	Amide biosynthesis	169
10.	Amino acids as constituents of proteins	170

References	÷				179
	 • • •	• • • • •	• • • • •	 	172

Chapter 46. Biogenetic Hypotheses Derived of the Known Behaviour of Plant Constituents

175
177
181
183
187
189
190
192
1 1 1

Chapter 47. Ureotelism and Uricotelism

1.	Uric acid	193
2.	Urea	. 199
З,	From comparative pathological chemistry to chemical zoology	202

4.	Difficulties in the determination of the pattern of end products	
	of amino acid metabolism	203
5.	The "law of arginase"	205
Re	eferences	207

Chapter 48. Ureogenesis

1. The precursors of urea in the mammalian body	209
2. Identification of urea in blood. Demise of the kidney as the site	
of urea formation	212
3. Influence of the work of Prévost and Dumas on the theories of	
secretion in general	213
4. Urea formation in the liver	215
5. Experiments with amino acids on whole animals	217
6. More efficient surgery	218
7. Chemical schemes for urea formation	218
8. The "ornithine effect"	221
9. Analysis of the "ornithine effect"	223
10. Ornithine cycle and "ureotelism"	224
11. The ornithine cycle as a pattern of metabolic organization	225
References	226

Chapter 49. Uricogenesis and Uricolysis

1.	Origin of the uric acid excreted by birds	229
2.	Gout	231
3.	Xanthic bases	233
	(a) Xanthine	233
	(b) Hypoxanthine	233
	(c) Guanine	234
4.	The murexide reaction	234
5.	The alleged relation of xanthic bases with proteins	235
6.	Miescher and nuclein	235
7.	Identification by Kossel of xanthic bases (later called alloxuric	
	bases, purines) as components of nucleic acids	239
8.	Pseudo-nucleins	241
9.	Dismissal of the notion of nucleins as phosphoproteins	241
10.	Structural formula of the purine nucleus and of its derivatives	242
11.	The hydrolytic products of thymus nucleic acid	243
12.	The hydrolytic products of yeast nucleic acid	244
13.	An alleged chemical difference between plants and animals, con-	
	cerning the hydrolytic products of nucleic acid	244
14.	Pyrimidine derivatives of nucleic acids	245

15. The concept of an essential difference in the process of uricogenesis in birds and in mammals 247 16. Physiological conversion of oxy-purines to uric acid 248 17. The alleged synthetic formation of uric acid by way of urea . . . 249 18. Catabolism of purines (uricolysis) 252 19. Theory of allantoin biosynthesis from urea 256 257 21. The concept of a pathway of purine synthesis from ammonia 258 22. Synthesis of hypoxanthine from ammonia and unknown carbon 25923. Early history of the sources of the carbon atoms of the purine 260 24. Arginine and histidine 261 25. Pyrimidines considered as precursors of purines 262 References 263

Chapter 50. Other Biosynthetic Aspects of Animal Chemistry

1.	Introduction	267
2.	Detoxication synthesis	271
	(a) Hippuric acid	271
	(b) Conjugated sulphates	272
	(c) Glucuronoconjugation	273
	(d) Mercapturic acid	274
	(e) The "detoxication concept"	275
3.	"Excretory syntheses" and "intermediary syntheses"	275
4.	The biosynthesis of fats	277
5.	The biosynthesis of cholesterol	279
	(a) Discovery	279
	(b) Configuration	282
	(c) Biosynthesis	283
	(d) Squalene recognized as a precursor of cholesterol in vivo	283
	(e) Biosynthesis of isoprenoids	283
	(f) Hypothetical mechanism for the conversion of squalene into	
	cholesterol	285
6.	The biosynthesis of porphyrins	285
	(a) Discovery	285
	(b) Dualism of the porphyrins	286
	(c) Synthesis	286
	(d) Biosynthesis	286
7	Creatine phosphate creatine creatinine	287
••	(a) Introduction	287
	(b) The discovery of creatine phosphate	287
	(c) The chemistry of creatine and creatinine	289
	(d) Creatine and creatining in animal chemistry	200
	(u) Greatine and creatinne in animal chemistry	291

xiv

(e) Epistemological obstacles in early studies on creatine biosyn-	
thesis	293
(f) Creatine considered as a detoxicator of guanidine	295
(g) Influence of amino acids on creatine biosynthesis	295
8. Protein biosynthesis	301
References	302

Chapter 51. Reversible Zymo-hydrolysis

1.	Reversible zymo-hydrolysis of carbohydrates and glucosides	307
2.	Synthesis in the presence of lipase	311
3.	Plasteins	313
	(a) Definition	313
	(b) Was the plastein precipitate of proteinic nature?	316
	(c) Are plasteins real synthetic products?	317
	(d) Properties of plasteins	317
	(e) Assumed association with respiratory processes	317
4.	Impossibility of formation of peptide bonds by reversal of Mass	
	Action	319
5.	Physiologically reversed reactions of biosynthesis as distinguished	
	from physicochemically reversible reactions	321
Re	eferences	323

Chapter 52. First Approaches to the Biosynthesis of Amino Acids

• . ,

and a second

1. Reducing amination of keto acids	325
2. Acetylating amination of keto acids	326
3. Transamination from glutamate	328
4. Von Euler's scheme	328
5. Proline, glutamic acid and glutamine	329
6. Biosynthesis of glycine	330
References	333
Subject Index	335
Name Index	353
Notes added in proof	362

د