Martina Flörke

Bestimmung effektiver hydraulischer Parameter in heterogenen porösen Medien

Bibliothek

Technische Universität Darmstadt Bibliothek Wasser und Umwelt Petersenstraße 13 D-64287 Darmstadt Telefon 06151 / 163659 Fax 06151 / 163758 INSTITUT FUR WASSERBAU UND WASSERWIRTSCHAFT TECHNISCHE UNIVERSITATEDARMSTADT PETERSENSTR. 13, 64287 DARMSTADT Tel. 0 81 51/16 21 43 - Fax: 16 32 43

Juv. - Nr.: 4296 KWH 12

KASSELER WASSERBAU – MITTEILUNGEN HEFT 13

Universität Kassel Fachgebiet Wasserbau und Wasserwirtschaft Leiter: Prof. Dr.-Ing. F. Tönsmann

Kassel, Oktober 2002

IP	١H	AL	TS.	VE	RZ	EIC	СН	NIS
----	----	----	-----	----	----	-----	----	-----

Seite:

ABBILDU	ABBILDUNGSVERZEICHNIS V			
TABELL	TABELLENVERZEICHNIS VII			
NOMEN	NOMENKLATUR VIII			
ABSTRA	ст хіі			
1 EINL	EITUNG			
0 . ITE				
2 LITE	RATUR			
2.1	Effektive hydraulische Leitfähigkeit3			
2.2	Effektiver Speicherkoeffizient 13			
3 LÖS	UNGSSTRATEGIEN			
3.1	Szenario 1			
3.1.1	Geostatistisches Modell			
3.1.2	Numerisches Strömungsmodell			
3.1.3	3D-Auswertung der Absenkungen 26			
3.1.4	Resümee			
3.2	Szenario 2 30			
3.2.1	Geostatistisches Modell			
3.2.2	Numerisches Strömungsmodell 30			
3.2.3	2D-Auswertung nach klassischen Methoden			
3.2.4	Resümee			
3.3	Szenario 3 44			
3.3.1	Geostatistisches Modell 45			
3.3.2	Numerisches Strömungsmodell 45			
3.3.3	2D-Auswertung nach klassischen Methoden 49			
3.3.4	Resümee			
4 MOE	DELLERGEBNISSE			
4.1	Effektive hydraulische Leitfähigkeit50			

	4.1.1	Fall 1: Unbegrenzter Aquifer	50
	4.1.2	Fall 2: Begrenzter Aquifer	52
	4.1.3	Fall 2: Auswirkungen auf die Bestimmung des effektiven Speicherkoeffizienten	55
	4.1.4	Fall 2: Der Einfluss horizontaler Korrelationslängen	60
4	l.2 E	ffektiver Speicherkoeffizient	61
	4.2.1	Fall 1: Unbegrenzter Aquifer	61
	4.2.2	Fall 2: Begrenzter Aquifer	64
	4.2.3	Fall 2: Einfluss auf den Verlauf der Absenkungskurve	66
5	ANW	ENDUNGSBEISPIEL: HORKHEIMER INSEL	69
5	5.1 E	inleitung	69
5	5.2 V	orstellung des Anwendungsbeispiels	69
	5.2.1	Bohrungen und Messstellen	70
	5.2.2	Geologische und hydrogeologische Verhältnisse	72
	5.2.3	Statistik der räumlichen Verteilung der hydraulischen Leitfähigkeiten	74
Ę	5.3 P	umpversuche	75
	5.3.1	Eigene Auswertung der Pumpversuche	76
	5.3.2	Bestimmung des effektiven Speicherkoeffizienten	78
ţ	5.4 V	ergleich mit Statistik der räumlichen Verteilung	82
;	5.5 C	liskussion der Ergebnisse	85
6	ZUSA	MMENFASSUNG UND AUSBLICK	87
7	LITE	RATUR	92
A	ANH	ANG	A-1

NSERENTEN	XIII
PUBLIKATIONEN DES FACHGEBIETES	xıv

ABBILDUNGSVERZEICHNIS

Abb	. 3.1:	Schematische Darstellung des Modellgebiets, horizontaler Schnitt in Modellmitte	. 26
Abb.	. 3.2:	Lage des Brunnens sowie ein Beobachtungsbrunnen mit verschiedenen Aufzeichnungspunkten	. 29
Abb	. 3.3:	Definition des REV (Representative Elementary Volume) nach Bear (1988)	. 33
Abb	. 3.4:	Verlauf von Absenkung und erster Ableitung bei radialer Strömung	. 34
Abb	. 3.5:	Verlauf von Absenkung und erster Ableitung bei Erreichen von Rändern	. 35
Abb	. 3.6:	Verlauf von Absenkung und erster Ableitung bei Doppelporosität (ohne Berücksichtigung von Skin-Effekten im Brunnen)	. 35
Abb	. 3.7:	Verlauf der Absenkung und ersten Ableitung (r = 10 m), K _{eff,innen} > K _{eff,außen}	. 37
Abb	. 3.8:	Verlauf der Absenkung und ersten Ableitung (r = 30 m), $K_{eff,innen} > K_{eff,außen}$. 38
Abb	. 3.9:	Verlauf der Absenkung und ersten Ableitung (r = 10 m), $K_{eff,innen} = K_{eff,außen}$. 39
Abb	. 3.10:	Verlauf der Absenkung und ersten Ableitung (r = 10 m), $K_{eff,innen} < K_{eff,außen}$. 40
Abb.	. 3.11:	Schematische Darstellung der ersten Ableitungen bei "Doppel- Leitfähigkeit"	. 42
Abb.	. 3.12:	Verlauf der Absenkung und ersten Ableitung (r = 10 m), $S_{eff,innen} > S_{eff,außen}$. 43
Abb.	. 3.13:	Verlauf der Absenkung und ersten Ableitung (r = 30 m), $S_{eff,innen} > S_{eff,außen}$. 44
Abb.	. 3.14:	Darstellung des Einflusses von S auf das Erreichen von Modellrändern $(S_1 > S_2, K = konstant)$. 46
Abb.	. 3.15:	Darstellung des Einflusses von Q auf das Erreichen von Modellrändern $(Q_1 > Q_2, K = konstant, S = konstant)$. 46
Abb.	. 3.16:	Modelldiskretisierung, unbegrenztes Modell	. 48
Abb	. 3.17:	Modelldiskretisierung, begrenztes Modell	. 49
Abb.	4.1:	Vergleich von Simulationsergebnissen und stochastischer Lösung	. 51

Abb. 4.2:	Ergebnisse für einen in horizontaler Richtung unbegrenzten und in vertikaler Richtung begrenzten Aquifer
Abb. 4.3:	Vergleich der Ergebnisse für einen unbegrenzten und begrenzten Aquifer 55
Abb. 4.4:	Auffächern der Absenkungskurven in einer Entfernung von r = 30 m 56
Abb. 4.5:	Bestimmung von S in einem begrenzten, heterogenen Medium (σ_Y = 3, λ_v/λ_h = 0,1)
Abb. 4.6:	Bestimmung von S in einem begrenzten heterogenen Aquifer $(\lambda_v/\lambda_h=0,1)$
Abb. 4.7:	Bestimmung von S in einem heterogenen Aquifer mit σ_Y = 0,5, in Abhängigkeit von der stochastischen vertikalen Aniotropie (e = λ_v / λ_h)
Abb. 4.8:	Bestimmung von S in einem heterogenen Aquifer mit σ_Y = 2, in Abhängigkeit von der stochastischen vertikalen Aniotropie (e = λ_v / λ_h)
Abb. 4.9:	Auffächern der Absenkungskurven in einer Entfernung von r = 30 m (σ_y = 2, λ_v / λ_h = 0,1 und λ_v / λ_h = 0,75)
Abb. 4.10:	Einfluss der horizontalen Korrelationslänge λ_h auf K_{eff} (σ_Y = 0,5; λ_v = 1) 61
Abb. 4.11:	Bestimmung effektiver Speicherkoeffizienten in einem unbegrenzten Aquifer
Abb. 4.12:	Vergleich effektiver Speicherkoeffizienten: Dagan (1979, 1982b) und Auswertung modellierter Pumpversuche
Abb. 4.13:	S _{eff} für einen in horizontaler Richtung unbegrenzten und in vertikaler Richtung begrenzten Aquifer
Abb. 4.14:	Vergleich der Ergebnisse für einen unbegrenzten und unbegrenzten Aquifer
Abb. 4.15:	s-förmiger Verlauf der Absenkungskurve im Brunnen
Abb. 5.1:	Lage des Naturmessfelds Horkheimer Insel (Schad 1997)70
Abb. 5.2:	Lageplan der Grundwassermessstellen auf dem Gelände Horkheimer Insel (Schad 1997), modifiziert71
Abb. 5.3:	Ausbauvarianten der Grundwassermessstellen und Piezometer (Schad 1997)72
Abb. 5.4:	Geologischer Querschnitt auf dem Gelände Horkheimer Insel (Schad 1997)73
Abb. 5.5:	Vergleich der Ergebnisse der Pumpversuche für die Horkheimer Insel

Abb. 5.6:	Ermittelte Speicherkoeffizienten der einzelnen Pumpversuche im Nordbereich	79
Abb. 5.7:	Bestimmung des effektiven Speicherkoeffizienten im Nordbereich	80
Abb. 5.8:	Ermittelte Speicherkoeffizienten der einzelnen Pumpversuche im Südbereich	81
Abb. 5.9:	Bestimmung des effektiven Speicherkoeffizienten im Südbereich	81
Abb. 5.10:	Verlauf der beobachteten Absenkungen bei dem Pumpversuch in P10	82
Abb. 5.11:	Verlauf der beobachteten Absenkungen bei dem Pumpversuch in P41	83
Abb. 5.12:	Vergleich der ermittelten effektiven Transmissivitäten	84

TABELLENVERZEICHNIS

Tab. 3.1:	Standardabweichungen und Korrelationslängen aus Feldversuchen	22
Tab. 5.1:	Hydraulische Leitfähigkeiten aus Labor- und Feldversuchen auf dem Gelände Horkheimer Insel (Schad 1997)	74
Tab. A.1:	Ergebnisse der Pumpversuche im Nordbereich des Geländes Horkheimer Insel	A-21
Tab. A.2:	Ergebnisse der Pumpversuche im Südbereich des Geländes Horkheimer Insel	A-22