
Controlled and Conditioned Invariants in Linear System Theory

Giuseppe Basile

Department of Electronics, Computers, and Systems University of Bologna, Italy and University of Florida

Giovanni Marro

Department of Electronics, Computers, and Systems University of Bologna, Italy

CONTENTS

141 N		
	PREFACE	vii
	SYMBOLS	xi
CHAPTER 1	INTRODUCTION TO SYSTEMS	1
1.1	Basic Concepts and Terms, 1	
1.2	Some Examples of Dynamic Systems, 4	
1.3	General Definitions and Properties, 11	
	Controlling and Observing the State, 21	
	Interconnecting Systems, 25	
	1.5.1 Graphic Representations of Interconnected Systems, 25	
	1.5.2 Cascade, Parallel, and Feedback Interconnections, 29	
1.6	A Review of System and Control Theory Problems, 32	
	Finite-State Systems, 36	
	1.7.1 Controllability, 40	
	1.7.2 Reduction to the Minimal Form, 43	
	1.7.3 Diagnosis and State Observation, 47	
	1.7.4 Homing and State Reconstruction, 49	
	1.7.5 Finite-Memory Systems, 52	
CHAPTER 2	GENERAL PROPERTIES OF LINEAR SYSTEMS	56
2.1	The Free State Evolution of Linear Systems, 56	
	2.1.1 Linear Time-Varying Continuous Systems, 56	
	2.1.2 Linear Time-Varying Discrete Systems, 60	
	2.1.3 Function of a Matrix, 62	
	2.1.4 Linear Time-Invariant Continuous Systems, 65	
	2.1.5 Linear Time-Invariant Discrete Systems, 72	
2.2	The Forced State Evolution of Linear Systems, 75	
	2.2.1 Linear Time-Varying Continuous Systems, 76	

2.2.2 Linear Time-Varying Discrete Systems, 78

1

iii

- 2.2.3 Linear Time-Invariant Systems, 79
- 2.2.4 Computation of the Matrix Exponential Integral, 84
- 2.2.5 Approximating Continuous with Discrete, 87
- 2.3 IO Representations of Linear Constant Systems, 89
- 2.4 Relations Between IO and ISO Representations, 92 2.4.1 The Realization Problem, 94
- 2.5 Stability, 101
 - 2.5.1 Linear Time-Varying Systems, 101
 - 2.5.2 Linear Time-Invariant Systems, 104
 - 2.5.3 The Liapunov and Sylvester Equations, 107
- 2.6 Controllability and Observability, 111
 - 2.6.1 Linear Time-Varying Systems, 111
 - 2.6.2 Linear Time-Invariant Systems, 119

CHAPTER 3 THE GEOMETRIC APPROACH: CLASSIC FOUNDATIONS

126

- 3.1 Introduction, 126
 - 3.1.1 Some Subspace Algebra, 126
- 3.2 Invariants, 129
 - 3.2.1 Invariants and Changes of Basis, 129
 - 3.2.2 Lattices of Invariants and Related Algorithms, 131
 - 3.2.3 Invariants and System Structure, 132
 - 3.2.4 Invariants and State Trajectories, 134
 - 3.2.5 Stability and Complementability, 136
- 3.3 Controllability and Observability, 140
 - 3.3.1 The Kalman Canonical Decomposition, 143
 - 3.3.2 Referring to the Jordan Form, 148
 - 3.3.3 SISO Canonical Forms and Realizations, 150
 - 3.3.4 Structural Indices and MIMO Canonical Forms, 155
- 3.4 State Feedback and Output Injection, 160
 - 3.4.1 Asymptotic State Observers, 168
 - . 3.4.2 The Separation Property, 172
- 3.5 Some Geometric Aspects of Optimal Control, 176
 - 3.5.1 Convex Sets and Convex Functions, 178
 - 3.5.2 The Pontryagin Maximum Principle, 182
 - 3.5.3 The Linear-Quadratic Regulator, 193
 - 3.5.4 The Time-Invariant LQR Problem, 195

CHAPTER 4 THE GEOMETRIC APPROACH: ANALYSIS

204

- 4.1 Controlled and Conditioned Invariants, 204
 - 4.1.1' Some Specific Computational Algorithms, 209
 - 4.1.2 Self-Bounded Controlled Invariants and their Duals, 210
 - 4.1.3 Constrained Controllability and Observability, 215
 - 4.1.4 Stabilizability and Complementability, 217
- 4.2 Disturbance Localization and Unknown-Input State Estimation, 223

4.3	Unknown-Input Reconstructability, Invertibility, and Functional Controllability, 230
•	4.3.1 A General Unknown-Input Reconstructor, 232
	4.3.2 System Invertibility and Functional Controllability, 236
4.4	Invariant Zeros and the Invariant Zero Structure, 238
	4.4.1 The Generalized Frequency Response, 239
•	4.4.2 The Role of Zeros in Feedback Systems, 243
4.5	Extensions to Quadruples, 245
	4.5.1 On Zero Assignment, 248
CHAPTER 5	THE GEOMETRIC APPROACH: SYNTHESIS
5.1	The Five-Map System, 252
	5.1.1 Some Properties of the Extended State Space, 255
	5.1.2 Some Computational Aspects, 260
	5.1.3 The Dual-Lattice Structures, 266
5.2	The Dynamic Disturbance Localization and the
	Regulator Problem, 273
યુર્વ	5.2.1 Proof of the Nonconstructive Conditions, 276
1	5.2.2 Proof of the Constructive Conditions, 279
	5.2.3 General Remarks and Computational Recipes, 286
Ť	5.2.4 Sufficient Conditions in Terms of Zeros, 290
5.3	Reduced-Order Devices, 291
1.	5.3.1 Reduced-Order Observers, 295

- 5.3.2 Reduced-Order Compensators and Regulators, 296
- 5.4 Accessible Disturbance Localization and Model-Following Control, 299
- 5.5 Noninteracting Controllers, 303

CHAPTER 6 THE ROBUST REGULATOR

- 6.1 The Single-Variable Feedback Regulation Scheme, 310
- 6.2 The Autonomous Regulator: A General Synthesis Procedure, 315 6.2.1 On the Separation Property of Regulation, 324 6.2.2 The Internal Model Principle, 326
- 6.3 The Robust Regulator: Some Synthesis Procedures, 328
- 6.4 The Minimal-Order Robust Regulator, 338
- 6.5 The Robust Controlled Invariant, 344 6.5.1 The Hyper-Robust Disturbance Localization Problem, 350 6.5.2 Some Remarks on Hyper-Robust Regulation, 351

APPENDIX A MATHEMATICAL BACKGROUND

- A.1 Sets, Relations, Functions, 355 A.1.1 Equivalence Relations and Partitions, 364 A.1.2 Partial Orderings and Lattices, 365
- A.2 Fields, Vector Spaces, Linear Functions, 369 A.2.1 Bases, Isomorphisms, Linearity, 373

355

310

252

- A.2.2 Projections, Matrices, Similarity, 378
- A.2.3 A Brief Survey of Matrix Algebra, 382
- A.3 Inner Product, Orthogonality, 386
 - A.3.1 Orthogonal Projections, Pseudoinverse of a Linear Map, 391
- A.4 Eigenvalues, Eigenvectors, 394
 - A.4.1 The Schur Decomposition, 398
 - A.4.2 The Jordan Canonical Form. Part I, 399
 - A.4.3 Some Properties of Polynomials, 403
 - A.4.4 Cyclic Invariant Subspaces, Minimal Polynomial, 405
 - A.4.5 The Jordan Canonical Form. Part II, 408
 - A.4.6 The Real Jordan Form, 409
 - A.4.7 Computation of the Characteristic and Minimal Polynomial, 410
- A.5 Hermitian Matrices, Quadratic Forms, 414
- A.6 Metric and Normed Spaces, Norms, 417 A.6.1 Matrix Norms, 422
 - A.6.2 Banach and Hilbert Spaces, 426
 - A.6.3 The Main Existence and Uniqueness Theorem, 429

APPENDIX B COMPUTATIONAL BACKGROUND

- B.1 The Gauss-Jordan Elimination Method and the LU Factorization, 434
- B.2 The Gram-Schmidt Orthonormalization Process and the QR Factorization, 438 B.2.1 The QR Factorization for Singular Matrices, 441
- B.3 The Singular Value Decomposition, 442
- B.4 Some Matlab Subroutines for Geometric Approach Computations, 444

INDEX

434

455