Generalized Inverse of Matrices and its Applications

C. RADHAKRISHNA RAO, Sc.D., F.N.A., F.R.S. Director, Research and Training School Indian Statistical Institute

SUJIT KUMAR MITRA, Ph.D. Professor of Statistics Indian Statistical Institute

Technische Beebeer ihn Bunmstadt FACHBERGESSESSUE BIBLICTHE K Inventari-Mr.: 470 Sachgabiete:__ Standart:

JOHN WILEY & SONS, INC.

New York • Chichester • Brisbane • Toronto • Singapore

Contents

CHAPTER 1

Notations and Preliminaries		1
1.1	Row and Column Spaces of a Matrix, Subspaces and	
	Orthogonal Complement, Projection Operator	1
1.2	Canonical Forms of Matrices	4
1.3	Characteristic Function, Minimum Polynomials	7
1.4	Equivalence and Similarity	8
1.5	Special Products of Matrices	11
1.6	Notations	13
	Complements	17
CHAPTI	er. 2	
Ge	neralized Inverse of a Matrix	19
2.1	Matrices of Full Rank	19
2.2	Definition of a Generalized Inverse	20
2.3	Solution of Consistent Linear Equations	23
2.4	General Representation of g-Inverse	26
2.5	Reflexive g-Inverse	27
2.6	g-Inverse for a Basic Solution of $Ax = y$ (Consistent)	29
2.7	g-Inverse of a Specified Rank	31
2.8	Useful Decomposition Theorems for Matrices	33
2.9	Principal Idempotents of a Square Matrix	35
2.10) Spectral Decomposition of an Arbitrary Matrix	38
	Complements	40
CHAPT	er 3	
Th	ree Basic Types of g-Inverses	44
3.1	g-Inverse for a Minimum Norm Solution of $Ax = y$	44

•

(Consistent) 3.2 g-Inverse for a Least-Squares Solution of Ax = y (Inconsistent) 48

CONT	TT	N T	TO
CON	1 E	IN.	13

3.3	g-Inverse for Minimum Norm Least-Squares Solution of	
	Ax = v (Inconsistent)	50
3.4	Solution of Matrix Equations	55
3.5	Miscellaneous Expansions of A ⁺	61
3.6	g-Inverse of Partitioned Matrices	64
	Complements 4	67
CHAPTE	r 4	
Oth	er Special Types of g-Inverse	72
4.1	g-Inverse in Specified Linear Manifolds	72
4.2	g-Inverse of A with $\mathcal{M}(\mathbf{G}) \subset \mathcal{M}(\mathbf{A})$	73
4.3	g-Inverse of A with $\mathcal{M}(\mathbf{G}) \subset \mathcal{M}(\mathbf{A})$ and $\mathcal{M}(\mathbf{G}^*) \subset \mathcal{M}(\mathbf{A}^*)$	75
4.4	g-Inverse with the Power Property	77
4.5	A g-inverse that Commutes with the Matrix	79
4.6	A g-Inverse in the Subalgebra Generated by the Matrix	80
4.7	g-Inverse with the Eigenvalue Property	82
4.8	Inverses Commuting with a Power of the Matrix	91
4.9	Some useful Matrix Decomposition Theorems	93
4.10	A Commuting Pseudoinverse and Related Results	95
4.11	Constrained Inverses	98
	Complements	103
~		

CHAPTER 5

Pro	jectors, Idempotent Matrices and Partial Isometry	106
5.1	Projectors and their Properties	106
5.2	Orthogonal Projector	108
5.3	Explicit Representation of Projectors	109
5.4	Idempotent Matrices	111
5.5	Representation of Idempotent Matrices	112
5.6	Tripotent Matrices	113
5.7	Partial Isometry (Subunitary Transformation)	114
	Complements	118

CHAPTER 6

HAPTER 6	
Simultaneous Reduction of a Pair of	
Hermitian Forms	120
6.1 Introduction	120
	121

xii

	CONTENTS	xiii
6.3 6.4 6.5	Eigenvalues and Vectors of a Matrix with Respect to n.n.d. Matrix A Pair of Arbitrary Hermitian Forms Simultaneous Reduction of Several Hermitian Forms Complements	124 127 131 134
Chapte Est	R 7 imation of Parameters in Linear Models	136
7.1 7.2 7.3 7.4 7.5	Gauss-Markov Model Model: $(\mathbf{Y}, \mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}), \boldsymbol{\beta}, \sigma^2$ Unknown Model: $(\mathbf{Y}, \mathbf{X}\boldsymbol{\beta} \mathbf{R}\boldsymbol{\beta} = \mathbf{c}, \sigma^2 \mathbf{I}), \sigma^2$ and $\boldsymbol{\beta}$ Unknown Model: $(\mathbf{Y}, \mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{S}), \boldsymbol{\beta}$ and σ^2 Unknown Adjustment of Least-Squares Estimates for Addition or Removal of an Observation Complements	136 139 144 147 150 153
CHAPTI Coi Lea	er 8 nditions for Optimality and Validity of ast-Squares Theory	155
8.1 8.2 8.3 8.4	Introduction Specification Errors in the Dispersion Matrix Specification Errors in the Design Matrix Specification Errors in Design and Dispersion Matrices Complements	155 155 162 165 166
CHAPŤI Dis	er 9 tribution of Quadratic Forms	168
9.1 9.2 9.3	Introduction Quadratic Functions of Correlated Normal Variables Some Further Theorems on the Distribution of	168 171
9.4	Quadratic Functions Independence of Quadratic Forms Complements	174 177 178
CHAPTI Mis	er 10 scellaneous Applications of g-Inverses	180
10.1 10.2	Applications in Network Theory Applications to Mathematical Programming Problems	180 192

CONTENTS

10.3 Variance Components	197
Matrix is Singular	201
10.5 Discriminant Function in Multivariate Analysis	203
CHAPTER 11	
Computational Methods	207
11.1 General Formulae	207
11.2 Computation of g-Inverse when Independent Rows	207
11.3 g-Inverses Based on Factorization of Matrices	207
11.4 Special Techniques	210
11.5 Least Squares Solution	211
Bibliography on Generalized Inverses	
and Applications	219
а. 1 т. 1	225
Author Index	233
Subject Index	237

,

xiv

٤.