Contents

Preface to the Third Edition xvii

Chapter 1 Importance of Antennas in Mobile Systems and Recent Trends 1
 1.1 Introduction 1
 1.2 Trends 9
 1.2.1 Mobile Systems 13
 1.2.2 Increasing Information Flow 15
 1.2.3 Propagation 15
 1.3 Modern Mobile Antenna Design 15
 1.4 Objectives of This Book 19
References 22

Chapter 2 Essential Techniques in Mobile Antenna Systems Design 25
 2.1 Mobile Communication Systems 25
 2.1.1 Technologies in Mobile Communications 25
 2.1.2 Frequencies Used in Mobile Systems 31
 2.1.3 System Design and Antennas 33
 2.2 Fundamentals in Land Mobile Propagation 34
 2.2.1 Propagation Problems in Land Mobile Communications 34
 2.2.2 Multipath Propagation Fundamentals 36
 2.2.3 Classification of Multipath Propagation Models: NB, WB, and UWB 38
 2.2.4 Spatio-Temporal Propagation Channel Model 40
 2.2.5 Relation Between Space Correlation Characteristics and Space Diversity Effect 44
 2.2.6 Propagation Modeling for OFDM 47
 2.2.7 Propagation Studies for UWB 50
References 51
<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Advances in Mobile Propagation Prediction Methods</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Macrocells</td>
<td>55</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Definition of Parameters</td>
<td>57</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Empirical Path Loss Models</td>
<td>58</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Physical Models</td>
<td>65</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Comparison of Models</td>
<td>76</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Computerized Planning Tools</td>
<td>76</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Conclusions</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Microcells</td>
<td>78</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Dual-Slope Empirical Models</td>
<td>79</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Physical Models</td>
<td>81</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Nonline-of-Sight Models</td>
<td>86</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Microcell Propagation Models: Discussion</td>
<td>92</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Microcell Shadowing</td>
<td>93</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Conclusions</td>
<td>93</td>
</tr>
<tr>
<td>3.4</td>
<td>Picocells</td>
<td>94</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Empirical Models of Propagation Within Buildings</td>
<td>97</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Empirical Models of Propagation into Buildings</td>
<td>101</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Physical Models of Indoor Propagation</td>
<td>105</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Constitutive Parameters for Physical Models</td>
<td>105</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Propagation in Picocells: Discussion</td>
<td>106</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Multipath Effects</td>
<td>108</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Conclusions</td>
<td>108</td>
</tr>
<tr>
<td>3.5</td>
<td>Megacells</td>
<td>108</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Shadowing and Fast Fading</td>
<td>110</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Local Shadowing Effects</td>
<td>111</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Empirical Narrowband Models</td>
<td>113</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Statistical Models</td>
<td>115</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Physical-Statistical Models for Built-Up Areas</td>
<td>122</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Wideband Models</td>
<td>131</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Multisatellite Correlations</td>
<td>131</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Overall Mobile-Satellite Channel Model</td>
<td>133</td>
</tr>
<tr>
<td>3.6</td>
<td>The Future</td>
<td>134</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Intelligent Antennas</td>
<td>134</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Multidimensional Channel Models</td>
<td>135</td>
</tr>
<tr>
<td>3.6.3</td>
<td>High-Resolution Data</td>
<td>135</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Analytical Formulations</td>
<td>135</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Physical-Statistical Channel Modeling</td>
<td>136</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Real-Time Channel Predictions</td>
<td>136</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Overall</td>
<td>136</td>
</tr>
</tbody>
</table>

References

137
5.3.5 Technique of Omitting Balun
5.3.6 Technology of Downsizing PIFA

5.4 Evaluation of Antenna Performance
5.4.1 Measurement Method Using Optical Fiber

References

Chapter 6 Radio Frequency Exposure and Compliance Standards for Mobile Communication Devices

6.1 Introduction
6.2 Physical Parameters
6.3 Types of RF Safety Standards
6.4 Exposure Standards
 6.4.1 ICNIRP
 6.4.2 IEEE C95.1-2005
 6.4.3 Similarities and Differences Between the 1998 ICNIRP Guidelines and IEEE C95.1-2005
 6.4.4 Regulations Based on Older Standards
6.5 Compliance Standards
 6.5.1 Main Features of IEEE 1528-2003 (Including 1528a-2005) and IEC 62209-1
 6.5.2 Other Standards Related to Mobile Communication
6.6 Discussion and Conclusions

References

Chapter 7 Applications of Modern EM Computational Techniques: Antennas and Humans in Personal Communications

7.1 Introduction
7.2 Definition of Design Parameters for Handset Antennas
 7.2.1 Absorbed Power and Specific Absorption Rate
 7.2.2 Directivity and Gain
 7.2.3 Antenna Impedance and S_{11}
7.3 Finite-Difference Time-Domain Formulation
7.4 Eigenfunction Expansion Method
 7.4.1 EEM Implementation
 7.4.2 Hybridization of the EEM and MoM
7.5 Results Using EEM
 7.5.1 Human Head Model
 7.5.2 EM Interaction Characterizations
 7.5.3 Effects of Size of the Head Model: Adult and Child
 7.5.4 Comparison Between Homogeneous and Multilayered Spheres
 7.5.5 Vertical Location of Antennas
 7.5.6 Comparison with EEM and FDTD
10.2.3 Microstrip Antenna Design
10.2.4 Communication Coverage
10.2.5 Multiple Reflections
10.3 Field Strength in Communication Area
10.3.1 Multiple Reflections from Canopies
10.3.2 Mitigation Using an Absorber at the ETC Gate
10.3.3 Propagation in DSRC Coverage
10.3.4 Data Rate of DSRC
10.4 Antennas for DSRC
10.5 Applications for DSRC
References

Chapter 11 Antennas for Mobile Satellite Systems
11.1 Introduction
11.2 System Requirements for Vehicle Antennas
11.2.1 Mechanical Characteristics
11.2.2 Electrical Characteristics
11.2.3 Propagation Problems
11.3 Omnidirectional Antennas for Mobile Satellite Communications
11.3.1 Overview
11.3.2 Quadrifilar Helical Antenna
11.3.3 Crossed-Drooping Dipole Antenna
11.3.4 Patch Antenna
11.4 Directional Antennas for Mobile Satellite Communications
11.4.1 Antennas for INMARSAT
11.4.2 Directional Antennas in the ETS-V Program
11.4.3 Airborne Phased Array Antenna in the Domestic Satellite Phone Program
11.4.4 Directional Antennas in the MSAT Program
11.4.5 Directional Antennas in the Ku-Band CBB Program
11.5 Antenna Systems for GPS
11.5.1 General Requirements for GPS Antennas
11.5.2 Quadrifilar Helical Antennas
11.5.3 Microstrip Antennas
11.6 Multiband Antennas for Future GPS/ITS Services
11.6.1 Slot Ring Multiband Antenna for Future Dual Bands (L₁, L₂) GPS
11.6.2 Microstrip Multiband Antennas for GPS, VICS, and DSRC
11.7 Satellite Constellation Systems and Antenna Requirements
11.7.1 Constellation Systems and Demands on Antenna Design
11.7.2 Handset Antennas for Satellite Systems
References