REVIEW OF DEVELOPMENTS IN PLANE STRAIN FRACTURE TOUGHNESS TESTING

W. F. Brown, Jr., editor

ASTM SPECIAL TECHNICAL PUBLICATION 463

List price \$18.25

AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race Street, Philadelphia, Pa. 19103

SPAC

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Contents

	PAGE
Introduction to STP 463—w. F. BROWN, JR.	1
Progress in Fracture Testing of Metallic Materials—J. G. KAUFMAN	3
Theory.	4
Initial Recommendations.	4
Thickness as a Problem.	7
Fatigue Cracking	8
Emphasis on Thick Sections	9
Evolution of Notched Bend Specimens	12
Compact K _{IC} Specimen.	15
Screening Tests	15
Thin-Section Problem	18
Medium-Strength Materials	18
Cautionary Notes	18
Summary	20
Evaluation of a Method of Test for Plane Strain Fracture Toughness Testing	
Using a Bend Specimen	22
Pilot Program	23
Interlahoratory Tests	23
Fatime Cracking	24
Rend Testing	30
Analysis of K _{ra} Data	33
Conclusions	40
Dettich Europiano with Diano Strain Fracture Toughness (K.) Testing	
British Experience with Flane Strain Flacture Foughness (Kio) Festing	42
Collaborative Test Program	43
First Stage	43
Second Stage	44
Standardization of K_{ro} Testing	47
Influence of Fatigue Precracking Conditions	47
Crack Length-Specimen Thickness Requirements	51
Draft British Standard	61
Summary	61
Discussion	62
The Influence of Creak Length and Thickness in Plane Strain Fracture Tough	-
The innuence of Clack Length and Thickness in Flane Strain Flacture Fough-	63
Meterial and Specimen Propagation	66
Test Procedure	67
Analysis of Data	68
Pond Specimens	68
Smooth Specimens	71
Desults for Effects of Thickness and Crack Length	72
Screening Tests for K-	77
Correlation of K _{ro} with Tensile Properties	· 84
Practical Significance of Results	85
Annendives	88
Discussion	92

	FAGE
Crack Toughness Testing of High-Strength Steels—E. A. STEIGERWALD	102
Notch Bend Tests	107
K _{rc} Data for High-Strength Steels	113
Summary and Conclusions	115
Discussion	121
	141
Slow Bend K _{IC} Testing of Medium-Strength High-Toughness Steels—s. T.	
ROLFE AND S. R. NOVAK	124
Materials and Procedure	125
Specimen Geometry and Analysis	128
Results and Discussion	131
$K_{\rm IC}$ Values	131
Pop-in Criteria	133
Specimen Size Requirements	139
Effects of Stress Level During Fatigue Cracking	144
Effect of Face Notching	145
Correlation Between Kig and CVN Values	145
Summary and Conclusions	147
	147
Application of Fracture Mechanics Technology to Medium-Strength Steels-	1.00
W. G. CLARK, JR., AND E. T. WESSEL.	160
Information Required in Fracture Mechanics Technology	161
Material Properties	162
Discussion of Materials Properties	172
Example Problem	177
General Stress Analysis	180
Calculation of Critical Flaw Sizes	180
Calculation of Cyclic Life	182
Material Selection	184
Development of Inspection Criteria and Safety Factors	185
Summary	186
Discussion	188
Enotes and his Analysis of the Lew Enounce Frankling of the Alley	100
Fractographic Analysis of the Low Energy Fracture of an Aluminum Alloy—	101
J. P. TANAKA, C. A. PAMPILLO, AND J. R. LOW, JR.	191
Material	192
Fractographic Study	193
Failure of Large Inclusions	196
Transmission Electron Microscopy	200
Identification of Void-Nucleating Particles	204
Discussion	207
Fractographic Observation of Boundary Between Fatigue Crack and	
Dimpled Rupture	210
Conclusions	214
Appendix	214
Commentary on Present Practice	216
Commentary on Fresch Frachier W. F. BROWN, JR., AND J. E. SKAWLEY	210
Eur demontel Concente	217
Fundamental Concepts.	219
Effects of Plastic Deformation in K_{1C} lests	221
Face Grooving.	226
Specimen Preparation and Test Procedure	227
Crack Starter Configuration and Displacement Gage Length	227

vi

	PAGE
Fatigue Cracking	228
Nonuniformities in Fatigue Cracks	228
Fatigue Crack Sharpness Requirement	229
Testing of Brittle Material	231
Comparison of Plane Strain Fracture Toughness of Various Alloys	232
Correlation of K _{IC} with Other Properties.	238
Correlation with Tensile Properties	238
Tensile Ductility in Material Specifications	240
Correlation with Impact Properties	241
Fracture Tests with Subsized Specimens (Screening Tests)	243
Material Selection for Particular Applications	244
Acceptance Tests.	244
Alloy Development Tests	246
Tentative Method of Test for Plane Strain Fracture Toughness of Metallic	
Materials (ASTM Designation: E 300.70 T)	249