PADÉ APPROXIMANTS Second Edition

GEORGE A. BAKER, JR. Theoretical Division Los Alamos National Laboratory

PETER GRAVES-MORRIS Department of Mathematics University of Bradford

CONTENTS

Prefa	ce	page xi
Preface to the first edition		
1	Introduction and definitions	1
1.1	Introduction and Notational Conventions	1
1.2	Padé Approximants to the Exponential Function	8
1.3	Sequences and Series; Obstacles	15
1.4	The Baker Definition, the C-Table, and Block Structure	20
1.5	Duality and Invariance	32
2	Elementary developments	38
2.1	Numerical Calculation of Padé Approximants	38
2.2	Decipherment of Singularities from Padé Approximants and	
	Apparent Errors	44
2.3	Some Explicit Forms for Padé Denominators	56
2.4	Bigradients and Hadamard's Formula	62
3	Padé approximants and numerical methods	67
3.1	Aitken's Δ^2 Method as [L/1] Padé Approximants	67
3.2	Acceleration and Overacceleration of Convergence	71
3.3	The ε -Algorithm and the η -Algorithm	73
3.4	Wynn's Identity and the ε -Algorithm	81
3.5	Common Identities and Recursion Formulas	85
3.6	Recursive Calculation of the Coefficients of Padé Approximants	92
3.7	Kronecker's Algorithm and Cordellier's Identity	106
3.8	The Q.D. Algorithm and the Root Problem	115
4	Connection with continued fractions	122
4.1	Definitions, Recursion Relations, and Computation	122
4.2	Continued Fractions Derived from Maclaurin Series	129
4.3	Various Representations of Continued Fractions	141
4.4	The Berlekamp-Massey Algorithm and an Application of It	153
4.5	Different Types of Continued Fractions	165
4.6	Examples of Continued Fractions Which Are Padé Approximants	173
4.7	Convergence of Continued Fractions	182

5	Stieltjes series and Pólya series	193
5.1	Introduction to Stieltjes Series	193
5.2	Convergence of Stieltjes Series	201
5.3	Moment Problems and Orthogonal Polynomials	213
5.4	Stieltjes Series Convergent in $ z < R$	220
	5.4.1 Hausdorff Moment Problem	233
	5.4.2 Integer Moment Problem	234
5.5	Stieltjes Series with Zero Radius of Convergence	236
5.6	Hamburger Series and the Hamburger Moment Problem	245
5.7	Pólya Frequency Series	264
6	Convergence theory	276
6.1	Introduction to Convergence Theory: Rows	276
6.2	de Montessus's Theorem	280
6.3	Hermite's Formula and de Montessus's Theorem	290
6.4	Uniqueness of Convergence	297
6.5	Convergence in Measure	305
6.6	Lemniscates, Capacity, and Measure	316
6.7	The Padé Conjecture	330
7	Extensions of Padé approximants	335
7.1	Multipoint Padé Approximants	335
7.2	Baker-Gammel Approximants	362
7.3	Series Analysis	372
7.4	Padé-Laurent, Padé-Fourier, and Padé-Tchebycheff Approximants	378
7.5	Laurent-Padé Approximation and Toeplitz Systems	389
7.6	Multivariable Approximants	402
8	Multiseries annroviments	415
81	Simultaneous Padé Approximants	415
82	Operator Padé Approximants	429
8.3	Rectangular Matrix Padé Approximants for Minimal Partial-	
0.5	Realization Problems	442
8.4	Vector Padé Approximants	466
0.7	8.4.1 Functional Padé Approximants	492
8.5	Hermite-Padé Polynomials	494
	8.5.1 Minimality Definitions and Uniqueness	497
	8.5.2 Table Structure Results	501
	8.5.3 Recursion Relations	515
	8.5.4 Existence of Sequences and the Modified Minimality	
	Definition	521
8.6	Integral and Algebraic Approximants	524
	8.6.1 Monodromy Theory	525
	8.6.2 Definitions and the Accuracy-through-Order Principle	531
	8.6.3 Equivalence Properties	538
	8.6.4 Invariance Properties	539
	8.6.5 Separation Properties	543
	8.6.6 Convergence Theory	544
	8.6.7 Singular Index and Amplitude Computations	564
9	Connection with integral equations and quantum mechanics	570
9.1	The General Method and Finite-Rank Kernels	570

.

9.2	Padé Approximants and Integral Equations with Compact Kernels	573
9.3	Projection Techniques	578
9.4	Potential Scattering	584
9.5	Derivation of Padé Approximants from Variational Principles	596
9.6	An Error Bound on Padé Approximants from Variational Principles	606
9.7	Single-sign Potentials in Scattering Theory etc.	608
9.8	Variational Padé Approximants	616
9.9	Singular Potentials	622
10	Connection with numerical analysis	628
10.1	Acceleration of Convergence	628
10.2	Tchebycheff's Inequalities for the Density Function	633
10.3	Collocation and the τ -method	639
10.4	Crank-Nicholson and Related Methods for the Diffusion Equation	646
10.5	Inversion of the Laplace Transform	654
10.6	Connection with Rational Approximation	656
	10.6.1 The Carathéodory–Fejér Method	663
10.7	Padé Approximants for the Riccati Equation	670
11	Connection with quantum field theory	674
11.1	Perturbed Harmonic Oscillators	674
	11.1.1 The Peres Model	675
	11.1.2 The Anharmonic Oscillator	678
11.2	Pion–Pion Scattering	679
11.3	Lattice–Cutoff $\lambda \phi_n^4$ Euclidean Field Theory, or the Continuous-Spin	
	Ising Model	684
Appendix: A FORTRAN FUNCTION		690
Bibliography		695
Index	index	