Martin Meywerk

CAE-Methoden in der Fahrzeugtechnik

Mit 239 Abbildungen und 10 Tabellen

Inhaltsverzeichnis

1	Ein!	leitung	1		
2	Rec	hnergestützte Methoden	7		
	2.1		7		
	2.2	Computer	4		
3	Modellbildung				
	3.1	Physikalische Modellbildung 1	7		
	3.2	Geometrische Modellbildung	3		
		3.2.1 Geometrische Aufbereitung	3		
		3.2.2 Physikalische Modifikation	6		
	3.3	Mathematische Modellbildung	8		
4	Par	tielle Differentialgleichungen und			
	Dis	kretisierungsmethoden 33	3		
	4.1	Klassifikation partieller Differentialgleichungen	3		
	4.2	Diskretisierungsprinzipe	7		
		4.2.1 Schwache Formen	7		
		4.2.2 Methode der gewichteten Residuen	9		
		4.2.3 Finite-Differenzen-Methode	0		
		4.2.4 Finite-Volumen-Methode	1		
		4.2.5 Begriffe	4		
		4.2.6 Smoothed-Particle-Hydrodynamic-Methode	6		
		4.2.7 Moving-Least-Square-Approximation	8		
		4.2.8 Äußere Approximation (Trefftz-FEM) 48	8		
		4.2.9 Randelemente-Methode 56			
-5	Wä	rmeleitung, Temperaturstrahlung, Konvektion, Diffusion 5	5		
	5.1	Wärmeleitung			
	5.2	Temperaturstrahlung	-		
	5.3	Konvektion 6			

X	Inhaltsverzeichnis		
	5.4 5.5	Diffusion67Plausibilitätsbetrachtungen68	
6	Dyna	amik starrer Körper	
U	6.1	Kinetik des starren Körpers	
	6.2	Kinetische Energie des starren Körpers	
	6.3	Elemente von Starrkörperprogrammen 81	
	6.4	Orientierung starrer Körper 82	
	6.5	Aufstellen und Lösen der Gleichungen 88	
		6.5.1 Aufstellen der Bewegungsgleichungen 88	
		6.5.2 Lösen der Gleichungen	
7	Stat	ik und Dynamik 93	
•	7.1	Grundlagen der Elastizitätstheorie	
	• • •	7 1 1 Der dreiachsige Spannungszustand	
		7.1.2 Der ebene Spannungszustand	
		7.1.3 Kinematik des verformbaren Körpers	
		7.1.4 Hauptachsen und Invarianten	
		7.1.5 Kompatibilitätsbedingungen	
		7.1.6 Stoffgesetz	
		7.1.7 Formänderungsenergie	
	7.2	Elemente und Elementmatrizen	
	7.3	Beispiele	
		7.3.1 Spannungsberechnung	
		7.3.2 Eigenschwingungen	
8	Fin	ite-Elemente-Vernetzungen	
	8.1	Finite-Elemente-Typen	
	8.2	Numerische Integration (Quadratur)	
	8.3	Spannungsberechnung	
	8.4	Elementqualität	
	8.5	Beispiele	
	8.6	Abschätzungen	
9	\mathbf{Cr}	ashberechnung und Insassensimulation	
	9.1	Einführung	
	9.2	Elasto-Plastizitat	
	9.3	Kontaktalgorithmen	
	9.4	Weitere Aspekte	
		9.4.1 Hourglass-Moden	
		9.4.2 Zeitschritt	
		9.4.3 Crashprogramme	
	9.5	Insassensimulation	
	9.6	165	
	0.7	7 Unaktiocha Hinwalsa	

10	Akustik
10	10.1 Einführung
	10.2 Berechnungsmethoder
	10.2.1 Theoretische C
	10.2.2 Rayleighsche I
	10.2.3 Boundary-Eler
	10.2.4 Finite-Element
	10.2.5 Statistische Er
	10.2.6 Ray-Tracing-M
	10.3 Praktische Hinweise.
11	
•	11.1 Statik von Rohkaross
	11.2 Dynamik von Rohkar
	11.3 Vorhersage der Leben
12	
	12.1 Motoren
	12.2 Außenaerodynamik .
	12.3 Klimatisierung
. 15	12.4 Ladungswechselbered
13	MKS-Modelle
	13.1 Ventilsteuerung und
n N	13.2 Fahrdynamik
.14	Fahrbahn-Fahrzeug-Int
	14.1 Reifenmodelle
	14.2 Nachgiebige Fahrbah
116	Nichtlineare Optimieru
16	15.1 Grundlagen
	15.2 Suchstrategien
	15.2.1 Jacob-Suchver 15.2.2 Simplex-Verfa
	15.2.2 Simplex-vertal
5.4	15.3 Newton- und Gradier
	15.4 Verfahren der zulässi
	15.5 Evolutionäre Algoriti
	15.6 Ganzzahlige Optimie
	15.7 DOE und RSM
	158 Neuronale Netze
	15.9 Multikriterielle Optir
2000年1980年1980年1980年1980年1980年1980年1980年1	15.10Beispiele
	15.10.1Crashberechnd

82

88

88 89

......117

.....118

123

	- 1 1.	
XII	Inhaltsver	zeicnnis

	15.10.2Parameteridentifizierung31015.10.3Rückhaltesysteme31115.10.4Sicken- und Topologieoptimierung313
16	Phänomene nichtlinearer dynamischer Systeme31916.1 Singuläre Punkte und invariante Mannigfaltigkeiten32016.2 Bifurkationen32816.3 Super- und subharmonische Schwingungen33716.4 Attraktoren und deterministisches Chaos340
Lit	eraturverzeichnis347
Sac	chverzeichnis

Einleitung

Der steigende Wettbewerbsdrukende Innovationszykluszeiten Um dieses Ziel zu erreichen, setheden zur Berechnung von Fabetreffen sowohl die Karosserienenten, Komfortaspekte und de Beim Einsatz der CAE-Method vor ein Prototype erstellt wird) ist einen virtuellen Prototype zur können, um Fehler zu erker im CAD-Modell umzusetzen. In der Entwicklung laufen dabe legung der äußeren Form; CA Mock-Up, Zusammenbau aller Engenschaften (CAE: Berechntstung) parallel ab.

im CAE-Umfeld gibt es viele terstützen. In den Tabellen 1. gelasst. Die Güte und die Vorh B und C mit folgender Bedeutuptognosesicher; B ... im Einsa Beschränkter Einsatz wegen ur In den Tabellen sind zusätzlich entsprechenden CAE-Methode Mechanik starrer Körper; DK Korper; HM: Hydromechanik Zusätzlich ist in der Spalte F oven Teilbereiche der Physik a

Die Abkürzungen wurden le gewählt und besitzen keine allg