Chapter 2 Light-Induced Charge Transport in Photorefractive Crystals
Karsten Buse, and Eckhard Krätzig

Summary

2.1 Introduction
2.2 One-center model
2.3 Two-center model
2.4 Three-valence model
2.5 Charge transport in different crystals
2.6 Conclusions
Acknowledgment
References

Chapter 3 Nonlinear Self-Organization in Photorefractive Materials
Partha P. Banerjee, Nickolai V. Kukhtarev, and John O. Dimmock

3.1 Introduction
3.2 Basic experimental observations
3.3 Theory
3.3.1 Fabry-Perot modes
3.3.2 Model equations
3.3.3 Instability criterion and the dispersion relation
3.3.4 Nonlinear eigenmodes in the steady state
3.3.5 Self-phase conjugation
3.3.6 Model of hexagonal formation based on transverse electrical instability
3.5 Conclusion
Acknowledgment
References

Chapter 4 Liquid Crystal Photorefractive Optics: Dynamic and Storage Holographic Grating Formation, Wave Mixing, and Beam/Image Processing
Iam-Choon Khoo

Summary

4.1 Introduction
4.2 Nematic films under applied dc bias field
4.2.1 Space-charge field formation and refractive index change 77

4.3 Optical wave mixing effects in C60 doped films 82
 4.3.1 Self-diffraction in homeotropically and planar aligned film 82
 4.3.2 Beam amplification—theory and experiments 84
 4.3.3 Storage grating capability 86

4.4 Methyl red–doped nematic liquid crystal films 90
 4.4.1 Optical wave mixing and transient grating diffraction 90
 4.4.2 Optically induced dc voltages 94
 4.4.3 Self-defocusing and limiting at nanowatt cw laser power 96
 4.4.4 Image processing—incoherent to coherent image conversion, adaptive optics 98
 4.4.5 Storage holographic grating formation 100

4.5 Conclusion 101
Acknowledgment 102
References 102

Chapter 5 Spectral and Spatial Diffraction in a Nonlinear Photorefractive Hologram 105
 Feng Zhao and Hanying Zhou

5.1 Nonlinear beam coupling and erasure dynamics on hologram diffraction spectral characteristics 106
 5.1.1 Coupled-recording-wave approach for PR reflection holograms 107
 5.1.2 Spectral diffraction characteristics 110

5.2 Refractive-index anisotropy on hologram spatial diffraction properties 113
 5.2.1 Spatial diffraction properties 115
 5.2.2 Effect on reconstructed hologram image fidelity and on multiplexing scheme 119

5.3 Anisotropic intrasignal coupling 122

5.4 Conclusions 125
Acknowledgment 128
References 128
Chapter 6 Holographic Memory Systems Using Photorefractive Materials

Andrei L. Mikaelian

Abstract 131

6.1 Introduction 132
6.2 Data storage density of two-dimensional holograms 134
6.3 The effect of noise on storage density 136
6.4 The role of optics in the realization of high storage density 136
6.5 Holographic random access data storage system 138
6.6 Suppression of interference noise by optimizing spatial spectra of two-dimensional holograms 144
6.7 Superresolution approach for increasing storage density 148
6.8 Photorefractive materials for rewritable holograms 151
6.9 Holographic memory systems using photorefractive crystals 155
6.10 Nondestructive reading of 3-D holograms recorded in photorefractive crystals 159
6.11 Application of reflection holograms 162
6.12 Holographic memory systems using one-dimensional holograms 163
6.13 Three-dimensional multilayer holographic memory 167
6.14 Interference noises in three-dimensional data carriers and volume storage density 170
6.15 Conclusion 172

Acknowledgment 174
References 174

Chapter 7 Cross Talk in Volume Holographic Memory

Xianmin Yi, Puchi Yeh, and Claire Gu

7.1 Cross talk 178
7.1.1 Angle-multiplexed Fourier plane holographic memory 178
7.1.2 Wavelength-multiplexed Fourier plane holographic memory 193
7.1.3 Angle-multiplexed image plane holographic memory 196
7.2 Grating Detuning 208
7.2.1 Plane reference wave 213
Chapter 8 Imaging and Storage with Spherical-Reference Volume Holograms

George Barbashitis, and David J. Brady

8.1 Introduction 233
8.2 Volume holographic systems 235
 8.2.1 Multiplexing schemes and architectures 235
 8.2.2 Volume holographic materials 240
8.3 Volume diffraction theory 242
8.4 Shift multiplexing 243
 8.4.1 Introductory remarks 243
 8.4.2 Volume diffraction from spherical-reference holograms 245
 8.4.3 Shift selectivity in the transmission geometry 249
 8.4.4 Volume holographic degeneracies in the transmission geometry 250
8.5 Imaging with volume holograms 252
 8.5.1 Introductory remarks 252
 8.5.2 Reflection geometry, plane-wave signal 256
 8.5.3 Reflection geometry, spherical wave signal 260
 8.5.4 90° geometry, plane-wave signal 262
 8.5.5 90° geometry, spherical wave signal 266
8.6 Concluding remarks 268
References 268

Chapter 9 Three-Dimensionally Photorefractive Bit-Oriented Digital Memory

Satashi Kawata

Abstract 277
9.1 Introduction: limitation and breakthrough of optical high-density data storage 278
9.2 Materials and optics for three-dimensional digital optical memory 279
9.3 Three-dimensional photopolymer memory 282
9.4 Lithium niobate three-dimensional digital memory 286
Chapter 10 Conditions for Confocal Readout of Three-Dimensional Photorefractive data bits

Min Gu

Abstract 307

10.1 Introduction 308
10.2 Three-dimensional bit data storage 309
10.3 Confocal scanning microscopy 311
10.4 Passband of the 3-D coherent transfer function for reflection confocal microscopy 313
10.5 Spatial frequency response of 3-D data bits recorded by the single-photon photorefractive effect 317
10.6 Spatial frequency response of 3-D data bits recorded by the two-photon photorefractive effect 320
10.7 Effect of refractive index mismatch 324
10.8 Conclusion 328
Acknowledgments 329
References 329

Chapter 11 Three-Dimensional Photorefractive Memory Based on Phase-Code and Rotational Multiplexing

Xianyang Yang

11.1 Introduction 333
11.2 Phase-code multiplexing 335
11.3 Construction of Hadamard phase-codes for holographic memories 337
11.4 Utilization of Hadamard phase-codes of \(m \neq 2^n \) in holographic memories 343
11.5 Increase storage density by rotation multiplexing 346
11.6 Demonstration with off-the-shelf devices 350
11.6.1 Demonstration system design 350
11.6.2 Performance potential 355
11.7 Conclusions 357
Acknowledgments 358
References 358

Chapter 12 Compact Holographic Memory Module 361
Ernst Chuang, Jean-Jaques P. Drolet, Wenhai Liu, Demetri Psaltis

Abstract 361
12.1 Introduction 362
12.2 Conjugate readout method 363
12.3 Dynamic hologram refresher chip 365
12.4 Periodic copying 366
12.5 Compact fast-access architecture 371
 12.5.1 Readout 373
 12.5.2 System volume density 374
 12.5.3 Recording rate 375
 12.5.4 Cost 376
12.6 Pixel size limit for holograms 377
12.7 Roadmap for a competitive HRAM technology 379
12.8 Conclusion 381
Acknowledgments 382
References 382

Chapter 13 Dynamic Interconnections Using Photorefractive Crystals 385
Osamu Matoba, Kazuyoshi Itoh, and Kazuo Kuroda

13.1 Introduction 385
13.2 Photorefractive waveguides 387
 13.2.1 Fabrication 390
 13.2.2 Model of photorefractive waveguides 394
 13.2.3 Modification of waveguide structure for dynamic interconnections 397
 13.2.4 Application 404
13.3 Segmented photorefractive waveguide 405
 13.3.1 Fabrication 406
 13.3.2 Tolerance for fabrication errors 411
 13.3.3 Transformation of waveguide structure for dynamic interconnections 412
13.4 Array of photorefractive waveguides

13.4.1 Fabrication technique 416

13.4.2 Experiments 417

13.4.3 Maximum density of photorefractive waveguides 419

13.5 Summary 423

References 424

Chapter 14 Self-Pumped Phase Conjugation in BaTiO$_3$:Rh for Dynamic Wavefront Correction of Nd:YAG Lasers 431
Nicolas Huot, Jean-Michel Jonathan, and Gérard Roosen

14.1 Characterization of the materials 432

14.1.1 Characterization with continuous-wave illumination 433

14.1.2 Performances of oxidized crystals 439

14.1.3 Characterization with nanosecond illumination 443

14.2 Self-Pumped Phase Conjugation 449

14.2.1 Internal loop self-pumped phase conjugate mirror 450

14.2.2 Ring self-pumped phase conjugation 452

14.3 Dynamic wavefront correction of MOPA laser sources 464

14.3.1 Origin of aberrations in Nd:YAG amplifier rods 465

14.3.2 MOPA laser sources including a photorefractive self-pumped phase conjugate mirror 466

14.3.3 Comparison of photorefractive self-pumped phase conjugation to other existing techniques 471

14.4 Conclusion 475

References 477

Chapter 15 Space-Time Processing with Photorefractive Volume Holography Using Femtosecond Laser Pulses 485
Yeshaiahu Fainman, Pang-Chen Sun, and Yuri T. Mazurenko

15.1 Introduction 485

15.2 Spatial-domain holography 486

15.3 Temporal holography 487

15.3.1 Time-domain holography 487

15.3.2 Spectral holography 499

15.4 Space-time holographic processing 507