W. Weidlich G. Haag

Concepts and Models of a Quantitative Sociology

The Dynamics of Interacting Populations

With 71 Figures

Springer-Verlag Berlin Heidelberg New York 1983

Lehrstuhl für Theoretische Festkörperphysik
Technische Hochschule
Darmstadt
Contents

1. Introduction and Outline .. 1
 1.1 Synergetic Concepts in the Natural Sciences 1
 1.1.1 Physico-Chemical Systems 2
 1.1.2 Dynamics and Equations of Motion in Physico-Chemical
 Systems .. 3
 1.2 Synergetic Concepts in Sociology 10
 1.3 Significance and Limitations of Quantitative Sociology 14

2. Opinion Formation – an Elementary Example of Semi-Quantitative
 Sociology .. 18
 2.1 The Model ... 18
 2.2 The Equations of Motion .. 19
 2.2.1 The Master Equation for $p(n; t)$ 19
 2.2.2 The Fokker-Planck Equation for $P(x; t)$ 22
 2.2.3 The Langevin Equation for $x(t)$ 25
 2.2.4 Equations for Mean Values 26
 2.3 Solutions of the Equations of Motion 28
 2.3.1 Stationary Solutions ... 28
 2.3.2 *Time Dependent Solutions 30
 2.4 Choice of Transition Probabilities and the Explicit Form of the
 Model .. 40
 2.5 The Sociological Interpretation of the Model 45

3. Fundamental Concepts of Quantitative Sociology 55
 3.1 Attitude Space, Socio-Configuration and Situation Space 55
 3.2 Equations of Motion for the Socio-Configuration 58
 3.2.1 The Master Equation .. 58
 3.2.2 The Stochastic and the Fokker-Planck Equation 62
 3.2.3 *The Langevin Equations and the Fokker-Planck Equation 66
 3.2.4 Approximate Mean Value Equations 72
 3.2.5 *Exact Mean Value Equations 73
 3.3 The Dynamics of Trend Parameters and of the Situation Vector . 76
 3.4* Mean Value Equations for Grossvariables of the
 Socio-Configuration .. 78

Sections marked with * can be omitted on a first reading
4. Migration and/or Birth-Death Processes in Populations

4.1 The General Model

4.2 Migration of Two Interacting Populations Between Two Parts of a City

4.2.1 Master Equation, Mean Value, Variance and Fokker-Planck Equations

4.2.2 Solutions of the Equations in Relevant Cases

4.3 Birth-Death Processes Within a Single Population

4.3.1 Stochastic Versus Deterministic Description

4.3.2 Multi-Step Birth-Death Processes

4.4 Migration and Predator-Prey Interaction Between Two Species

4.4.1 Master Equation and Mean Value Equations for the Special Model

4.4.2 Comparison of Predator-Prey Interaction Without and With Non-Linear Migration

5.1 Introduction

5.1.1 The Relation to Preceding Concepts and Models

5.1.2 The Purpose, the Main Proposition and the Limitations of the Schumpeter Clock Model

5.2 Macro- and Micro-Economic Variables of the Model and Their Interdependence

5.2.1 Strategic Investment

5.2.2 The Investors’ Configuration

5.2.3 Strategic Investment and the Investors’ Configuration

5.3 Design of the Investors’ Interaction Model

5.3.1 The Equation of Motion for the Investors’ Configuration

5.3.2 The Equation of Motion for the Investors’ Propensities

5.3.3 The Closed Set of Equations of Motion

5.4 Structural Analysis of the System of Equations

5.4.1 The Singular Points of the Equations of Motion

5.4.2 Stability Analysis

5.4.3 The Limit Cycle Existence Theorem

5.5 Numerical Analysis Based on the Model

5.5.1 Model Solutions for the Motion of a Hypothetical Economy in Ideal Time

5.5.2 Changes in Industrial Strategic Investment in the Federal Republic of Germany Between 1956 and 1978

6. The Interaction of Competitive Macrosocieties

6.1 Reconsideration of the Problem of Model Construction

6.2 The “Minimal Model”

6.2.1 The Grossvariables of the Model

6.2.2 The Equations of Motion