Referenten:

Prof. em. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c. mult. E. Stein

Prof. Dr. rer. nat. C. Carstensen

Prof. Dr. rer. nat. E. Stephan

Prof. Dr.-Ing. P. Wriggers

heorie und Numerik residualer Fehlerschätzer für die Finite-Elemente-Methode unter Verwendung äquilibrierter Randspannungen

Vom Fachbereich Bauingenieur- und Vermessungswesen der Universität Hannover

zur Erlangung der venia legendi für das Fachgebiet

Numerische Mechanik

angenommene Habilitationsschrift von

Dr.-Ing. Dipl.-Phys. Stephan Ohnimus

Tag der Einreichung: 11. 1. 2000 Tag der mündl. Prüfung: 30. 1. 2001 Tag der Antrittsvorlesung: 11. 5.2001

Institut für Baumechanik und Numerische Mechanik

Inhaltsverzeichnis

1	Einleitung, Motivation und Aufgabenstellung					
2	Modellproblem und FE-Darstellung					
	2.1	Linear elastisches Modellproblem	9			
	2.2	Diskrete Lösung und Residuum	14			
3	Fehleranalysis äquilibrierter Residuen					
	3.1	Anisotrope- und dimensions-adaptive Fehlerschätzer	23			
4	Berechnung äquilibrierter Randspannungen					
	4.1	Motivation zum Vorgehen und Einleitung	28			
	4.2	Netze ohne irreguläre Knoten	29			
	4.3	Irreguläre Knoten "hanging nodes"	35			
	4.4	Rekonstruktion der Knotenkräfte	40			
	4.5	Beschreibung für lineare Ansatzfunktionen	41			
	4.6	Beschreibung für quadratische Ansatzfunktionen	43			
	4.7	Äquilibrierte Randspannungen mit rekonstruierte Knotenkräfte	47			
	4.8	Beispiele	48			
		4.8.1 Fehlerschätzer, Fehlernormen und Referenzlösung	48			
		4.8.2 Beispiel an einem 3D- und 2D-Würfel	51			
		4.8.3 Beispiel eines Kragträgers	56			
		4.8.4 Beispiel für anisotrope und elastische Materialgleichungen	59			
5	Gradierte Netze 63					
	5.1	5.1 Gradierungsmethode				
	5.2	Adaptionsstrategie				
	5.3	Beispiel für gradierte Netze	67			

6	Lok	ale, zie	elorientierte Fehlerschätzer	73				
	6.1	Fehler	schätzung der zielorientierten Größe	. 75				
	6.2	Duales	s Problem für lokale Spannungen	. 80				
	6.3	Duales	s Problem für Querkräfte und Momente	. 81				
	6.4	Beispi	el an einem Rahmensystem	. 84				
7	Feh	lerschä	itzer für Elastoplastizität	91				
	7.1	Model	l-Problem	. 91				
	7.2	Residuum und Fehlerschätzung						
	7.3	Äquilibriertes Residuum						
	7.4	Beispiel einer quadratischen Platte mit Kreisloch						
	7.5	Beispi	el für perfekte Elasto-Plastizität 2D	. 100				
8	Feh	ehlerschätzer für die Modellanpassung 105						
	8.1	Fehlerschätzer für die Modellerweiterung						
	8.2	Einfaches Beispiel für die Modellfehlerschätzer						
	8.3	Kopplung verschiedenartiger modellierter Teilgebiete						
	8.4	Beispiel für die Modelladaptivität						
	8.5	Materialgleichungen						
		8.5.1	Konsistente Linearisierung für ein verallgemeinertes plastisches Werkstoffmodell	. 118				
		8.5.2	Beispiel für ein allgemeines plastisches Werkstoffmodell im Hinblick auf Beton					
		8.5.3	Isotropes Schädigungsmodell für den Beton mit Plastizität	. 122				
		8.5.4	Beispiel zur gekoppelten Berechnung verschiedenartig modellierter Teilgebiete eines stahlbewehrten Balkens auf zwei Stützen					
9	Zus	ammei	nfassung und Ausblick	131				
Li	terat	urvers	eichnis .	133				
Le	Cebenslauf							
Fc	rsch	Forschungsberichte aus dem IBNM						