P. Schneider J. Ehlers E. E. Falco

Gravitational Lenses

With 112 Figures

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

Contents

1.	Introduction					
	1.1	Historical remarks	1			
		1.1.1 Before 1919	1			
		1.1.2 The period 1919–1937	3			
		1.1.3 The period 1963–1979	6			
		1.1.4 Post-1979	ę			
	1.2	Outline of the book	Ll			
	1.3					
2.	Basi	ic facts and the observational situation 2	25			
	2.1	The Schwarzschild lens	25			
	2.2	The general lens	26			
	2.3		33			
	2.4	Observing gravitational lens systems 4	11			
		2.4.1 Expectations for point sources 4	12			
		2.4.2 Expectations for extended sources 4	16			
	2.5	Known gravitational lens systems 4	17			
		2.5.1 Doubles 4	18			
		2.5.2 Triples 6	30			
		2.5.3 Quadruples 6	34			
		2.5.4 Additional candidates 7	71			
		2.5.5 Arcs 7	72			
		2.5.6 Rings	77			
		2.5.7 A rapidly growing list of candidates 8	34			
		2.5.8 Speculations on other gravitational lens systems . 8	34			
		2.5.9 Gravitational lenses and cosmology 8	39			
3.	Opt	ics in curved spacetime	9]			
	3.1	The vacuum Maxwell equations 9)]			
	3.2	Locally approximately plane waves				
	3.3	Fermat's principle				
	3.4	Geometry of ray bundles 10				
		3.4.1 Ray systems and their connection vectors 10)4			
		3.4.2 Optical scalars and their transport equations 10)(
	3.5	Distances based on light rays. Caustics	1(
	3.6	Luminosity, flux and intensity				

4.	Der	$egin{aligned} ext{rivation of the lens equation } & \dots & \dots \end{aligned}$				
	4.1	Einstein's gravitational field equation	119			
	4.2	Approximate metrics of isolated, slowly moving,				
		non-compact matter distributions	121			
	4.3	Light deflection by quasistationary,				
		isolated mass distributions	123			
	4.4	Summary of Friedmann-Lemaître cosmological models	127			
	4.5	Light propagation and redshift-distance relations				
		in homogeneous and inhomogeneous model universes	132			
		4.5.1 Flux conservation and the focusing theorem	132			
		4.5.2 Redshift–distance relations	134			
		4.5.3 The Dyer–Roeder equation	137			
	4.6	The lens mapping in cosmology				
Ser .	4.7	Wave optics in lens theory				
5.	Pro	Properties of the lens mapping				
	5.1	Basic equations of the lens theory	157			
	5.2	Magnification and critical curves	161			
	5.3	Time delay and Fermat's principle	166			
	5.4	Two general theorems about gravitational lensing	172			
		5.4.1 The case of a single lens plane	172			
		5.4.2 Generalizations	176			
		5.4.3 Necessary and sufficient conditions				
		for multiple imaging	177			
	5.5	The topography of time delay (Fermat) surfaces	177			
6.	Lensing near critical points 1					
	6.1	The lens mapping near ordinary images	184			
	6.2	Stable singularities of lens mappings	185			
		6.2.1 Folds. Rules for truncating Taylor expansions	186			
		6.2.2 Cusps	192			
		6.2.3 Whitney's theorem. Singularities				
		of generic lens maps	197			
	6.3	Stable singularities of one-parameter families				
		of lens mappings; metamorphoses	198			
		6.3.1 Umbilics				
		6.3.2 Swallowtails	203			
		6.3.3 Lips and beak-to-beaks	207			
		6.3.4 Concluding remarks about singularities	211			
	6.4	Magnification of extended sources near folds 2				
7.	Way	Wave optics in gravitational lensing 21				
	7.1	Preliminaries; magnification of ordinary images	217			
	7.2	Magnification near isolated caustic points				
	7.3	Magnification near fold catastrophes	222			

8.	Sim	le lens models,	229		
	8.1	Axially symmetric lenses	230		
		8.1.1 General properties	230		
		8.1.2 The Schwarzschild lens	239		
		8.1.3 Disks as lenses	240		
		8.1.4 The singular isothermal sphere	243		
		8.1.5 A family of lens models for galaxies	244		
		8.1.6 A uniform ring	247		
	8.2	Lenses with perturbed symmetry (Quadrupole lenses)	249		
		8.2.1 The perturbed Plummer model	252		
		8.2.2 The perturbed Schwarzschild lens			
		('Chang-Refsdal lens')	255		
	8.3	The two point-mass lens	261		
		8.3.1 Two equal point masses	261		
		8.3.2 Two point masses with arbitrary mass ratio	264		
		8.3.3 Two point masses with external shear	264		
		8.3.4 Generalization to N point masses	265		
	8.4	Lenses with elliptical symmetry	266		
		8.4.1 Elliptical isodensity curves	267		
		8.4.2 Elliptical isopotentials	268		
		8.4.3 A practical approach to (nearly) elliptical lenses .	271		
	8.5	Marginal lenses 2			
	8.6	Generic properties of "elliptical lenses"	277		
		8.6.1 Evolution of the caustic structure	277		
		8.6.2 Imaging properties	278		
9.	Multiple light deflection 28				
	9.1	The multiple lens-plane theory	282		
		9.1.1 The lens equation	282		
		9.1.2 The magnification matrix	285		
		9.1.3 Particular cases	287		
	9.2	Time delay and Fermat's principle	288		
	9.3	The generalized quadrupole lens			
10.	Numerical methods 29				
	10.1	Roots of one-dimensional equations	296		
	10.2				
	10.3				
	10.4				
	10.5	6 Transport of images 30			
	10.6	3 Ray shooting			
	10.7	Constructing lens and source models			
		from resolved images	307		

11.	Statistical gravitational lensing:				
	Gen	eral considerations 30	98		
	11.1	Cross-sections	1(
		11.1.1 Multiple image cross-sections 3	11		
		11.1.2 Magnification cross-sections 3:	13		
	11.2	The random star field 35	20		
		11.2.1 Probability distribution for the deflection 35	22		
		11.2.2 Shear and magnification	28		
		11.2.3 Inclusion of external shear			
		and smooth matter density 33	3(
		11.2.4 Correlated deflection probability 33	34		
		11.2.5 Spatial distribution of magnifications 33	37		
	11.3	Probabilities in a clumpy universe 34	4 4		
	11.4	Light propagation in inhomogeneous universes 34	1 8		
		11.4.1 Statistics for light rays	5(
		11.4.2 Statistics over sources 36	64		
	11.5	Maximum probabilities	66		
12.	Stat	stical gravitational lensing: Applications 3	71		
	12.1	Amplification bias and the luminosity function			
	12.1	of QSOs	73		
		12.1.1 Amplification bias: Preliminary discussion 3'			
		12.1.2 QSO source counts			
		and their luminosity function	78		
	12.2	Statistics of multiply imaged sources			
		12.2.1 Statistics for point-mass lenses			
		12.2.2 Statistics for isothermal spheres 38			
		12.2.3 Modifications of the lens model:			
		Symmetric lenses	9:		
		12.2.4 Modification of the lens model:			
		Asymmetric lenses	99		
		12.2.5 Lens surveys			
	12.3	QSO-galaxy associations			
		12.3.1 Observational challenges			
		12.3.2 Mathematical formulation			
		of the lensing problem	07		
		12.3.3 Maximal overdensity			
		12.3.4 Lens models			
		12.3.5 Relation to observations			
	12.4	Microlensing: Astrophysical discussion 4			
	1	12.4.1 Lens-induced variability			
		12.4.2 Microlensing in 2237 + 0305			
		12.4.3 Microlensing and broad emission lines of QSOs 4			
		12.4.4 Microlensing and the classification of AGNs 43			
			-		

	12.5	The amplification bias: Detailed discussion		
		12.5.1	Theoretical analysis	435
		12.5.2	Observational hints of amplification bias	444
			QSO-galaxy associations revisited	447
	12.6		ion of images	448
		Lensing	g of supernovae	453
`	12.8	Further	applications of statistical lensing	456
		12.8.1	Gravitational microlensing by the galactic halo	456
	_		Recurrence of γ -ray bursters	460
		12.8.3	Multiple imaging from an ensemble of galaxies,	
			and the 'missing lens' problem	461
13.	Grav	itation	al lenses as astrophysical tools	467
	13.1		tion of model parameters	468
		13.1.1	Invariance transformations	471
	\rightarrow	13.1.2	Determination of lens mass and Hubble constant	473
		13.1.3	Application to the 0957 + 561 system	476
	13.2		clusters of galaxies	483
			Introduction	483
	·		The nearly spherical lens	485
		13.2.3	Analysis of the observations;	
			arcs as astronomical tools	492
		13.2.4	Statistics of arcs and arclets	498
	13.3	Additio	nal applications	501
		13.3.1	The size of QSO absorption line systems	501
		13.3.2	Scanning of the source by caustics	504
		13.3.3	The parallax effect	508
		13.3.4	Cosmic strings	509
		13.3.5	Upper limits to the mass of some QSOs	511
		13.3.6	Gravitational lensing and superluminal motion	512
	13.4	Miscella	aneous topics	513
		13.4.1	Lensing and the microwave background	513
		13.4.2	Light deflection in the Solar System	514
		13.4.3	Light deflection in strong fields	514
Refe	erence	es		517
Inde	ex of	Individ	ual Objects	545
Sub	iect I	ndex		547