Innovative Shear Design

4

Hrista Stamenkovic

London and New York

Contents

	۰.		
•	٢	•	
ł	,		

	Prefe Fore	ace word	xii xv
1	Intro	oduction	1
2	Mechanism of diagonal failure of a reinforced concrete beam		
	2.1	A brief overview of the problem 6	
	2.2	Technical analysis 7	
	2.3	Comment on the existing theory of shear and diagonal tension 8	
	2.4	Discussion 18	
	2.5	Comments about our shear diagram based on the new law of physics 42	
	2.6	Reinforcement for the prevention of diagonal failure at bent concrete elements as required by the new law of physics 45	
	2.7	Prestressed concrete 66	
	2.8	Conclusion 68	
3		tical applications of the new theory: the fallacy of the truss ogy theory for reinforced concrete beams	73
	3.1	A brief overview of the problem 73	
	3.2	Introduction 76	
	3.3	Theoretical considerations 77	
	3.4	Discussion 79	
	3.5	Final note 90	
	3.6	Conclusion 90	

x Contents

5.1

4 Mechanism of vibrating fatigue failure of a reinforced concrete beam or any other member (a quantitative point of view)

- 4.1 A brief overview of the problem 93
- 4.2 Explanation of terms used in this study 93
- 4.3 Introduction 94
- 4.4 Theoretical considerations 94
- 4.5 Discussion 95
- 4.6 Conclusion 110

5 A triangularly reinforced shear wall can resist higher lateral forces better than an ordinary shear wall

- A brief overview of the problem 114
- 5.2 Introduction 115
- 5.3 Theoretical analysis 116
- 5.4 Comparison of cracks in a reinforced concrete beam and a shear wall 124
- 5.5 Critical review 126
- 5.6 Reinforcement for our shear wall 130
- 5.7 Greater liberty for openings (windows, doors) in our shear wall 130
- 5.8 Remarks 131
- 5.9 Subfoundation 134
- 5.10 Effects of internal active forces in seismic failures of ductile steel frame structures: a consequence of the new law of physics 134
- 5.11 Design and prefabrication of shear wall panels for parallel testing using ACI 318-95 guidelines method and the triangular reinforcement method 139

6 Mechanism of deformation of the horizontal membrane exposed to lateral forces

- 6.1 A brief overview of the problem 202
- 6.2 Introduction 202
- 6.3 Discussion 205
- 6.4 Conclusion 209

114

202

Combined conclusions		
7.1	First group of forces as per Newton's third law 211	
7.2	Second group of forces as per the new law of physics 211	
7.3	Any flexural bending stipulates two critical cross sections, one of which is a result of the new law of physics 215	
7.4	Any inverted T beam could be designed to be	
	very safe for bridge structures 215	
7.5	Contribution to safer ductile steel frame structure design: the outcome of the new law of physics 216	
7.6	New law of physics becomes a unique ally to prestressed concrete 216	
7.7		
	a new triangularly reinforced shear wall 216	
Арр	endix	218
1	The existence of internal active and internal resisting forces and the new law of physics 218	

Index

7

229