3D Games
Real-time Rendering and Software Technology

ALAN WATT AND
FABIO POLICARPO

ACM Press • SIGGRAPH Series
New York, New York

ADDISON-WESLEY

An imprint of PEARSON EDUCATION

Harlow, England • London • New York • Reading, Massachusetts • San Francisco • Toronto • Don Mills, Ontario • Sydney
Tokyo • Singapore • Hong Kong • Seoul • Taipei • Cape Town • Madrid • Mexico City • Amsterdam • Munich • Paris • Milan
Contents

Preface xiii

Foundations

1 Mathematical fundamentals of 3D computer graphics 1
 1.1 Manipulating three-dimensional structures 2
 1.2 Vectors and computer graphics 9
 1.3 Rays and computer graphics 14
 1.4 Bi-linear interpolation of polygon properties 21
 1.5 A basic maths engine using SIMD instructions 22

2 Modelling and representation 1 – comparative review and polygon mesh models 31
 2.1 Introduction 31
 2.2 Polygonal representation of three-dimensional objects 36
 2.3 High-level methods – constructive solid geometry 47
 2.4 High-level creation using modellers/editors 51

3 Modelling and representation 2 – the economics of polygon meshes 53
 3.1 Compressing polygonal models 53
 3.2 Compressing the geometry 54
 3.3 Encoding connectivity 56
 3.4 Triangle strips 57
 3.5 Local vs. global algorithms 59
CONTENTS

3.6 Using vertex buffers 60
3.7 Level of detail (LOD) processing 62

4 Representation and modelling 3 – landscape specialisations 68
4.1 Introduction 68
4.2 Simple height field landscapes 69
4.3 Procedural modelling of landscapes – fractals 70
4.4 Terrain LODs: triangle bintrees 72
4.5 Rendering of landscapes by ray casting 76

5 Modelling and representation 4 – Bézier, B-spline and subdivision surfaces 79
5.1 Introduction 79
5.2 Bézier curves 82
5.3 B-spline curves 91
5.4 Rational curves 104
5.5 From curves to surfaces 107
5.6 Modelling or creating patch surfaces 116
5.7 Rendering parametric surfaces 131
5.8 Practical Bézier technology for games 139
5.9 Subdivision surfaces 153
5.10 Scalability – polygon meshes, patch meshes and subdivision surfaces 170

Classical 3D graphics

6 Classic polygon mesh rendering technology 172
6.1 Coordinate spaces and geometric operations in the graphics pipeline 173
6.2 Operations carried out in view space 179
6.3 Algorithmic operations in the graphics pipeline 189
6.4 Rendering examples 212

7 Classic mapping techniques 215
7.1 Introduction 215
7.2 Two-dimensional texture maps to polygon mesh objects 218
7.3 Two-dimensional texture domain to bi-cubic parametric patch objects 227
7.4 Bump mapping 227
7.5 Environment or reflection mapping 231
11 Shadows in games
 11.1 The nature of shadows 329
 11.2 Classical shadow algorithms 333
 11.3 Shadows in games 340

12 Multi-pass rendering 346
 12.1 Introduction 346
 12.2 Multi-pass functionality 347
 12.3 Multi-pass algorithms 351
 12.4 Multi-pass sampling approaches 361
 12.5 Multi-texture 363
 12.6 Multi-texture example 365

Control of objects

13 Motion control – kinematic 368
 13.1 Introduction 368
 13.2 Pre-scripting animation – linear interpolation and elapsed time 370
 13.3 Pre-scripted animation – interpolation problems 372
 13.4 Pre-scripted animation – explicit scripting 373
 13.5 Interpolation of rotation 376
 13.6 Using quaternions to represent rotation 378
 13.7 The camera as an animated object 386
 13.8 Particle animation 387
 13.9 Particle animation and computer games 389
 13.10 Articulated structures 392

14 Control by dynamic simulation 402
 14.1 Dynamics in off-line animation – the famous example 402
 14.2 Initial value problems vs. boundary value problems 403
 14.3 Topic areas 404
 14.4 Motivations for dynamic simulations 405
 14.5 Basic classical theory for particles 406
 14.6 Basic classical theory for rigid bodies 408
 14.7 The practicalities of dynamic simulations 418
 14.8 Numerical integration 431
15 Collision detection
15.1 Broad phase/narrow phase algorithms 440
15.2 Bounding volume hierarchies 444
15.3 Broad phase collision detection with AABBs 445
15.4 Broad phase collision detection with OBBs 449
15.5 Broad phase collision detection with local or object spatial partitioning 451
15.6 Narrow phase collision detection 453
15.7 Single phase approaches 459

16 Interactive control
16.1 Interaction and animation 467
16.2 Controller module 467
16.3 User–object interaction – 6 DOF control with simple sampling 470
16.4 User–object animation – a four-key car simulation 473
16.5 Object–object interaction 476
16.6 Camera–object interaction 477
16.7 Objects with simple autonomous behaviour 478
16.8 User–scene interaction 482

17 Behaviour and AI
17.1 Established approaches and architectures 487
17.2 Agents and hierarchies 490
17.3 Examples of agent architectures 493
17.4 Cognitive modelling and situation calculus 498
17.5 The role of sensing – vision as an example 503
17.6 Learning architectures 505

2D technology

18 Two-dimensional techniques
18.1 Image pyramids 516
18.2 Wavelet transform 518
18.3 Image transforms and basis matrices 525
18.4 Wavelets and computer games 526
18.5 Image metamorphosis – morphing 531