Topics in Applied Continuum Mechanics

Symposium Vienna, March 1-2, 1974 Edited by J. L. Zeman and F. Ziegler

Springer-Verlag
Wien New York

T

Technische Hochschule Darmstadt Fachbereich Mechanik Bibliothek

Bibliothek BM 4/75

CONTENTS

PREFACE

THE FUUNDATIONS OF THERMOELASTICITY-EXPERIMENTS AND) [HEURY
(A.PHILLIPS)	
1. Introduction	1
2. The initial yield surface	. 4
3. The subsequent yield surface	6
4. Some theoretical consequences	10
References	13
ON THE PHYSICS AND MATHEMATICS OF SELF-STRESSES (E.	.KRÖNER)
1. Introduction	22
2. The physical origin of the self-stresses	23
3. Formulation of the mathematical problem of se	elf-stresses 27
4. The method of modified Green's functions	30
5. Concluding remarks	35
References	38
DISTORTION IN MICROPOLAR ELASTICITY (W.NOWACKI)	•
 Fundamental relations and equations 	39
2. Principle of virtual work	42
3. Theorem of minimum of the complimentary work	43
4. Reciprocity theorem	44
5. Equations in displacements and rotations	47
6. Compatibility equations	51
References	57
THE YIELD CRITERION IN THE GENERAL CASE OF NONHOMOD	GENEOUS STRESS
AND DEFORMATION FIELDS (J.A.KÖNIG and W.OLSZAK)	
1. Introduction	58
2. The plasticity condition	. 61
3. Special cases of the yield condition	62
4. Example: Pure bending	63
5. Criteria for neutral, passive and active prod	cesses 65

6. The flow law	67
References	69
ELECTRO-MAGNETO-ELASTICITY (J.B.ALBLAS)	
1. Introduction	71
2. Balance equations	77
3. The jump and boundary conditions	85
4. The constitutive equations	91
5. Linearization of the magnetic problem	95
6. Magneto-elastic waves in the infinite space and in the	
half-space	105
References	114
PLASTICITY AND CREEP THEORY IN ENGINEERING MECHANICS	
(J.F.BESSELING)	
1. Introduction	115
2. Limit analysis	117
3. Models of material behaviour	126
4. The geometrically and physically non-linear structural	
equations	132
5. Some remarks on the applications in engineering	134
References	136
CREEP IN CONTINUA AND STRUCTURES (J.HULT)	
1. Introduction	137
2. Basic laws of deformation and damage	139
3. Stable creep deformation, methods of analysis	141
3.1 Elastic analogue	142
3.2 Reference stress methods3.3 Energy theorems	143 144
4. Ductile instability	144
5. Brittle instability	149
6. Mixed type instability	150
References	150
WEAKENING OF ELASTIC SOLIDS BY DOUBLY-PERIODIC ARRAYS OF CRACKS	;
(W.R.DELAMETER and G.HERRMANN)	
1. Introduction	156
2. Formulation of the problems and the method of solution	157

	VII
3. Stress intensity factors	159
4. Change in strain energy and effective elastic contstants	
5. Summary of results	
References	167
	168
DYNAMIC THERMAL SHOCK RESISTANCE (H.BARGMANN)	
1. Introduction	174
2. The basic problem of radiation heating	175
3. Thermal shock resistance of structures	178
4. Representative materials	179
References	180
PLASTOKINETICS OF METAL FORMING (H.LIPPMANN)	
1. Introduction	182
2. Some rigorous solutions to kinetically stationary	
problems	184
2.1 General	184
2.2 Plane-strain compression of a layer 2.3 Axially symmetric bulging of a membrane	184 188
3. Perturbation method	191
3.1 General, Indentation of the half-space	191
3.2 Elementary kinetics of non-stationary forging	193
4. Further non-stationary solutions	196
4.1 Hagen-Poiseuille flow	196
4.2 Flexural waves in plate bulging 4.3 Uniaxial longitudinal waves in upsetting	197 201
References	206
AUTHOR INDEX	209
CURRECT INDEX	04.5
SUBJECT INDEX	212
LIST OF PUBLICATIONS OF PROFESSOR HEINZ PARKUS	216 ·

\$7