PLASTIC ANALYSIS OF SHEAR IN BEAMS DEEP BEAMS AND CORBELS

by

Chen Ganwei

CONTENTS				
Acknowledgements				
Notation I. Introduction				
				II. Plas
2.1	Failure and Yield Criteria			
	2.1.1	Coulomb's Failure Hypothesis and		
		Coulomb Materials	16	
	2.1.2	Coulomb's Modified Failure Hypothesis		
		and Modified Coulomb Materials	18	
	2.1.3	Failure Criterion for Concrete	2,4	
2.2	Theory	of Plasticity	26	
2.3	Intern	al Work for Plain Concrete	28	
	2.3.1	The Dissipation of Concrete in Plane		
		Strain Fields	31	
	2.3.2	The Dissipation of Concrete in Plane		
		Stress Fields	35	
2.4	Dissipation of Curved Yield Line			
	Corresponding to Rotation Around an			
	Arbitr	ary Point in the Plane	40	
2.5	The Plastic Strengths of Concrete			
2.6	Basic Assumptions			
	nding C d Corbe	arrying Capacity of Beams, Deep Beams ls	48	

2

	3.1	Members with Only Tensile Reinforcement	48
		3.1.1 Beams and Deep Beams with Rectangular	
		Section	48
		3.1.2 Corbels with Rectangular section	49
	3.2	Beams with Compression Reinforcement	50
	3.3	Deep Beams with Horizontal Web Reinforcement	51
	3.4	The Effectiveness Factor for Bending	53
	3.5	Experimental Verification	54
IV.	She	ar Carrying Capacity of Beams, Deep Beams and	
	Cor	bels without Web Reinforcement	56
	4.1	Shear Capacity Considering the Tensile	
		Strength of Concrete	56
		4.1.1 Lower Bound Solution	57
		4.1.2 Upper Bound Solution	67
		4.1.3 The Complete Plastic Solutions	76
		4.1.4 The ρ^{\star} and ν Values in the Plastic	
		Solutions	87
	4.2	Shear Capacity Neglecting the Tensile	
		Strength of Concrete	104
		4.2.1 Lower Bound Solution	104
		4.2.2 Upper Bound Solution	107
		4.2.3 Modified Simple Formula	110
	4.3	The Influence of Normal Forces on the	
		Shear Capacity	114
		4.3.1 Theoretical Solutions	114
		4.3.2 Experimental Verification	129
	4.4	The Influence of Prestress to Shear	
		Capacity of Beams	134
	4.5	Shear Capacity of Joints	143

3

V. Shear Carrying Capacity of Beams with Web						
Rein	forcement	147				
	5.1 Theoretical Solutions					
5.2	The Effective Shear Depth h^{*} and the					
	Effectiveness Factor $ u$	152				
53	Experimental Verification of the Theory	155				
	5.3.1 Conventional Thin-Webbed Beams	155				
	5.3.2 Deep Beams with Web Reinforcement	158				
	5.3.3 Prestressed Beams with Web Reinforcement					
5.4	Some Discussion on v	164				
SUMMARY		167				
RESUME		168				
REFERENC	ES	170				
ADDENDIA	A. Test Data of Deep Beams Failed in Flexure	188				
APPENDIX	B. Test Data of Beams, Deep Beams and Corbels	100				
	Failed in Shear	191				
	C. Test Data of Beams and Corbels with	171				
	Normal Force	210				
	D. Test Data of Prestressed Beams without					
	Shear Reinforcement	213				
	E. Test Data of Conventional Thin-Webbed					
	Beams with Web Reinforcement	221				
	F. Test Data of Deep Beams with Web					
	Reinforcement	224				
	G. Test Data of Prestressed Beams with					
	Web Reinforcement	225				

4