Structural Analysis

A UNIFIED CLASSICAL AND MATRIX APPROACH

A. GHALI

Professor of Civil Engineering University of Calgary

A. M. NEVILLE

Professor of Civil Engineering, University of Leeds formerly Dean of Engineering, University of Calgary

Chapters 20 and 24 written in collaboration with the authors by

Y. K. Cheung Professor of Civil Engineering, University of Hong Kong

SECOND EDITION

london Chapman and hall

A Halsted Press Book John Wiley & Sons, New York R

Technische Hochschule Barmstaar Fachbereich Mechanik Bibliothek Inv.-Nr.- <u>BM 179/79</u>

Contents

Notation

CHAPTER 1

xxi

0

/

Intro	lu	ction to the Analysis of Statically Indeterminate Structures 1
1-1		INTRODUCTIONI
1-2		STATICAL INDETERMINACY
1-3		EXPRESSIONS FOR DEGREE OF INDETERMINACY8
1-4		GENERAL METHODS OF ANALYSIS OF STATICALLY IN-
		DETERMINATE STRUCTURES12
1-5	د	KINEMATIC' INDETERMINACY
1-6		PRINCIPLE OF SUPERPOSITION
1-7		GENERAL
		PROBLEMS

CHAPTER 2

Force	Method of Analysis	24
2-1	INTRODUCTION	24
2-2	DESCRIPTION OF METHOD	24
2-3	FLEXIBILITY MATRIX	26
2-4	ANALYSIS FOR DIFFERENT LOADINGS	29
2-41	Effect of Displacement at Joints: Environmental Effects	29
2-42	Effect of Displacement at Coordinates	31
2-5	EQUATION OF THREE MOMENTS	37
2-6	GENERAL	41
	PROBLEMS	42

CHAPTER 3

	2	
	CHAPTER 3	
Displac	ement Method of Analysis 4	15
3-1	INTRODUCTION	45
3-2	DESCRIPTION OF METHOD	45
3-3	STIFFNESS MATRIX	49
3-4	ANALYSIS FOR DIFFERENT LOADINGS	50
3-5	ANALYSIS FOR ENVIRONMENTAL EFFECTS	50
3-6	EFFECT OF DISPLACEMENTS AT COORDINATES	
3-7	GENERAL	55
	PROBLEMS	56

CHAPTER 4

Flexibili	ity and Stiffness Matrices	71
4-1	INTRODUCTION	.71
4-2	RELATION BETWEEN FLEXIBILITY AND STIFFNESS	
	MATRICES	.71

4-3	CHOICE OF FORCE OR DISPLACEMENT METHOD	.74
4-4	STIFFNESS MATRIX FOR A PRISMATIC BEAM	. 79
4-5	CONDENSATION OF STIFFNESS MATRICES	. 81
4-6	PROPERTIES OF FLEXIBILITY AND STIFFNESS MATRICES	. 83
4-7	GENERAL	
	PROBLEMS	. 86

0

CHAPTER 5

.

	CHAFTER 5	
Strain	n Energy and Virtual Work	90
5-1	INTRODUCTION	
5-2	GEOMETRY OF DISPLACEMENTS	
5-3	STRAIN ENERGY	
5-31	Strain Energy Due to Axial Force	
5-32	Strain Energy Due to Bending Moment	
5-33	Strain Energy Due to Shear	
5-34	Strain Energy Due to Torsion	101
5-35	Total Strain Energy	102
5-4	COMPLEMENTARY ENERGY AND COMPLEMENTARY	
	WORK	102
5-5	PRINCIPLE OF VIRTUAL WORK	104
5-6	UNIT LOAD AND UNIT DISPLACEMENT THEOREMS	106
5-7	VIRTUAL WORK TRANSFORMATIONS	107
5-8	GENERAL	110

CHAPTER 6

Meth	od of Virtual Work and its Application to Trusses	112
6-1	INTRODUCTION	
6-2	CALCULATION OF DISPLACEMENT BY VIRTUAL WORK.	112
6-3	DISPLACEMENT OF STATICALLY INDETERMINATE	
	STRUCTURES	114
. 6-4	EVALUATION OF INTEGRALS FOR CALCULATION OF	
	DISPLACEMENT BY METHOD OF VIRTUAL WORK	116
6-5	TRUSS DEFLECTION	119
6-6	TRUSS DEFLECTION USING MATRIX ALGEBRA	122
•6-7	GENERAL	
	PROBLEMS	124

CHAPTER 7

Further	Applications of Method of Virtual Work	127
7-1	INTRODUCTION	127
7-2	EQUIVALENT JOINT LOADING	127
7-3	DEFLECTION OF BEAMS AND FRAMES	129
7-4	DEFLECTIONS OF BEAMS AND FRAMES USING MATRIX	
	ALGEBRA	137
7-5	FLEXIBILITY MATRIX OF THE ASSEMBLED STRUCTURE	145
7-6	GENERAL	147
	PROBLEMS	147

CHAPTER 8

Important Energy Theorems

151

8-1	INTRODUCTION	151
8-2	BETTI'S AND MAXWELL'S THEOREMS	151
8-3	APPLICATION OF BETTI'S THEOREM TO TRANSFORMA-	
	TION OF FORCES AND DISPLACEMENTS	153
8-4	TRANSFORMATION OF STIFFNESS AND FLEXIBILITY	
	MATRICES	158
8-5	STIFFNESS MATRIX OF ASSEMBLED STRUCTURE	160
8-6	ENGESSER'S THEOREM OF COMPATABILITY	163
8-7	CASTIGLIANO'S THEOREM OF COMPATABILITY	166
8-8	CALCULATION OF DISPLACEMENT BY COMPLEMENTARY	
	ENERGY	166
8-9	CASTIGLIANO'S THEOREMS	167
8-10	POTENTIAL ENERGY	170
8-11	GENERAL	
	PROBLEMS	172

CHAPTER 9

Displace	ement of Elastic Structures by Special Methods	177
9-1	INTRODUCTION	177
9-2	GRAPHICAL DETERMINATION OF DEFLECTION OF A	
	PLANE TRUSS	177
9-3	DIFFERENTIAL EQUATION FOR DEFLECTION OF A BEAM	
	IN BENDING	180
9-4	MOMENT-AREA THEOREMS	183
9-5	METHOD OF ELASTIC WEIGHTS	186
9-51	Equivalent Concentrated Loading	190
9-6	METHOD OF FINITE DIFFERENCES	194
9-7	REPRESENTATION OF DEFLECTIONS BY FOURIER SERIES	196
9-8	REPRESENTATION OF DEFLECTIONS BY SERIES WITH	
	INDETERMINATE PARAMETERS	198
9-9	GENERAL	204
	PROBLEMS	205

, CHAPTER 10

Applic	ation of the Force Method: Column Analogy	210
10-1	INTRODUCTION	
10-2	ELASTIC CENTER AND ANALOGOUS COLUMN	
10-21	Unsymmetrical Bents	
10-3	CHOICE OF THE RELEASED STRUCTURE	
10-4	END-STIFFNESS OF PLANE FRAMES	
10-41	End-Rotation	
10-42	End-Translation	
10-43	End-Forces	
10-44	Forced Displacement	226
10-5	STIFFNESS MATRIX FOR A BENT WITH SPECIAL END	
	CONDITIONS	
10-6	END-STIFFNESS OF STRAIGHT MEMBERS	
10-7	CORRECTION FOR THE EFFECT OF AXIAL FORCES IN	
	ARCHES	233
10-8	GENERAL	235
	PROBLEMS	236

,

11-9

CHAPTER 11

Application of the Displacement Method: Slope-Deflection and Moment Distribution 241 11-1 -11-2 11-3 SLOPE-DEFLECTION EQUATION FOR A STRAIGHT 11-4 11-5 MOMENT-DISTRIBUTION PROCEDURE FOR PLANE 11-6 FRAMES WITHOUT JOINT TRANSLATION 254 11 - 711-8

CHAPTER 12

Momen	t Distribution with Sway: Multistorey and Multibay Frames	268
12-1	INTRODUCTION	. 268
12-2	GENERAL PROCEDURE FOR PLANE FRAMES WITH	
	JOINT TRANSLATION	. 268
12-3	NO-SHEAR MOMENT DISTRIBUTION	. 276
12-4	METHOD OF SUCCESSIVE SWAY CORRECTIONS	. 283
12-5	THE SUBSTITUTE-FRAME METHOD	. 286
12-6	THE PRINCIPLE OF MULTIPLE	. 290
12-7	USE OF THE SUBSTITUTE FRAME WITH ANY STIFFNESS	
	PATTERN	. 293
12-8	GENERAL	. 293
	PROBLEMS	. 295

CHAPTER 13

Influenc	e Lines for Beams, Frames, and Grids	303
13-1	INTRODUCTION	303
13-2	CONCEPT AND APPLICATION OF INFLUENCE LINES	303
13-3	MÜLLER-BRESLAU'S PRINCIPLE	305
13-31	Procedure for Obtaining Influence Lines	309
13-4	CORRECTION FOR INDIRECT LOADING	.311
13-5	INFLUENCE LINES FOR A BEAM WITH FIXED ENDS	
13-6	INFLUENCE LINES FOR PLANE FRAMES	. 315
13-7	INFLUENCE LINES FOR GRIDS	320
13-8	GENERAL	. 331

CHAPTER 14

332

Influence Lines for Arches, Trusses, and Prestressed Concrete Members

14-1	INTRODUCTION
14-2	GENERAL SUPERPOSITION EQUATION
14-3	INFLUENCE LINES FOR ARCHES
14-4	INFLUENCE LINES FOR TRUSSES
14-5	PRESTRESSING MOMENT INFLUENCE COEFFICIENTS
14-6	RELATION BETWEEN INFLUENCE LINES

14-7	PRESTRESSING MOMENT INFLUENCE COEFFICIENTS	
	FOR FRAMES AND BEAMS	5
14-8	PRESTRESSING MOMENT INFLUENCE COEFFICIENTS	
	FOR GRIDS	3
14-9	GENERAL	l
	PROBLEMS	l

0

CHAPTER 15

- 4	
. 1	 ٠,

15-1	INTRODUCTION	356
15-2	EFFECT OF CHANGE IN LENGTH	
15-3	SECONDARY MOMENTS IN TRUSSES	359
15-31	Steps in Calculation by Moment Distribution	360
15-32	Relative Chord Rotation	
15-4	STIFFNESS OF PRISMATIC MEMBER SUBJECTED TO AN	
	AXIAL FORCE	364
15-41	Effect of Axial Compression	
15-42	Effect of Axial Tension	
15-43	General Treatment	
15-5	ADJUSTED END-ROTATIONAL STIFFNESS FOR A PRISMAT	
••••	MEMBER SUBJECTED TO AN AXIAL FORCE	-
15-6	FIXED-END MOMENTS FOR A PRISMATIC MEMBER	
	SUBJECTED TO AN AXIAL FORCE	375
15-61		
15-62	Concentrated Load	
15-7	ADJUSTED FIXED-END MOMENTS FOR A PRISMATIC	
10 /	MEMBER SUBJECTED TO AN AXIAL FORCE.	378
15-8	ELASTIC STABILITY OF FRAMES	
15-9	CALCULATION OF BUCKLING LOAD FOR FRAMES BY	
(2)	MOMENT DISTRIBUTION	180
15-10	GENERAL	
15-10	PROBLEMS	
	I RODLEMD	

CHAPTER 16

,

Analys	sis of Shear Walls 398
16-1	INTRODUCTION
16-2	STIFFNESS OF A SHEAR-WALL ELEMENT
16-3	STIFFNESS MATRIX OF A BEAM WITH RIGID END PARTS402
16-4	ANALYSIS OF A PLANE FRAME WITH SHEAR WALLS
16-5	SIMPLIFIED APPROXIMATE ANALYSIS OF A BUILDING
	AS A PLANE STRUCTURE
16-51	Special Case of Similar Columns and Beams410
16-6	SHEAR WALLS WITH OPENINGS415
16-7	THREE-DIMENSIONAL ANALYSIS418
16-71	One-Storey Structure
16-72	Multistorey Structure
16-8	GENERAL
	PROBLEMS

CHAPTER 17

Method of Finite Differences

Effects of Axial Forces

17-1	INTRODUCTION	435
17-2	REPRESENTATION OF DERIVATIVES BY FINITE DIFFER-	
	ENCES	436
17-21	Errors in Finite-Difference Equations	439
17-3	BENDING MOMENTS AND DEFLECTIONS IN A STATICALLY	
	DETERMINATE BEAM	440
17-4	FINITE-DIFFERENCE RELATION BETWEEN BEAM	
	DEFLECTION AND APPLIED LOADING	442
17-41	Beams with a Sudden Change in Section	443
17-42	Boundary Conditions	
17-5	FINITE-DIFFERENCE RELATION BETWEEN BEAM DE-	
	FLECTION AND STRESS RESULTANT OR REACTION	449
17-6	BEAM ON AN ELASTIC FOUNDATION	450
17-7	AXISYMMETRICAL CIRCULAR CYLINDRICAL SHELL	453
17-8	CONICAL AND SPHERICAL SHELLS	457
17-9	BUCKLING LOAD OF A COLUMN WITH HINGED ENDS	459
17-10	BUCKLING LOAD OF COLUMNS WITH END RESTRAINTS	465
17-11	GENERAL	
	PROBLEMS	

. 0

CHAPTER 18

s of Plates by Finite Differences	472
INTRODUCTION	472
REPRESENTATION OF PARTIAL DERIVATIVES BY FINITE	
DIFFERENCES	473
GOVERNING DIFFERENTIAL EQUATIONS FOR PLATES	
SUBJECTED TO IN-PLANE FORCES	474
AIRY STRESS FUNCTION	476
FINITE-DIFFERENCE EQUATIONS FOR PLATES SUB-	
JECTED TO IN-PLANE FORCES	477
Value of the Stress Function at Plate Boundary	481
GOVERNING DIFFERENTIAL EQUATION FOR PLATES IN	
BENDING	484
FINITE-DIFFERENCE EQUATIONS AT AN INTERIOR NODE	
OF A PLATE IN BENDING	488
BOUNDARY CONDITIONS OF A PLATE IN BENDING	488
ANALYSIS OF PLATES IN BENDING	494
Stiffened Plates	496
BUCKLING OF THIN PLATES	499
GENERAL	502
PROBLEMS	503
	INTRODUCTION REPRESENTATION OF PARTIAL DERIVATIVES BY FINITE DIFFERENCES GOVERNING DIFFERENTIAL EQUATIONS FOR PLATES SUBJECTED TO IN-PLANE FORCES AIRY STRESS FUNCTION FINITE-DIFFERENCE EQUATIONS FOR PLATES SUB- JECTED TO IN-PLANE FORCES Value of the Stress Function at Plate Boundary GOVERNING DIFFERENTIAL EQUATION FOR PLATES IN BENDING

CHAPTER 19

Influe	ence Coefficients by Finite Differences	506
19-1	INTRODUCTION	506
19-2	COMPARISON BETWEEN EQUIVALENT STIFFNESS MATRIX	
	AND STIFFNESS MATRIX	506
19-3	INFLUENCE COEFFICIENTS OF STRESS RESULTANTS	
19-4	TRANSFORMATION OF THE EQUIVALENT STIFFNESS	
	MATRIX	517

19-5	DISPLACEMENT METHOD WITH THE USE OF FINITE
	DIFFERENCES TO DERIVE ELEMENT STIFFNESS
1.2	MATRICES AND FIXED-END FORCES
19-6	GENERAL
	· PROBLEMS

0

CHAPTER 20

	CHAFTER 20	
Finite-	Element Method	526
20-1	INTRODUCTION	526
20-2	FINITE-ELEMENT PROCEDURE	527
20-3	CHOICE OF DISPLACEMENT FUNCTION	528
20-4	STIFFNESS MATRIX FORMULATION THROUGH MINI-	
	MIZATION OF TOTAL POTENTIAL ENERGY	530
20-5	TRIANGULAR ELEMENT: PLATES SUBJECTED TO	
	INPLANE FORCES	533
20-51	Displacement Function	534
20-52	Strains	538
20-53	Stresses	539
20-54	Stiffness Matrix	541
20-55	Consistent Load Vector	542
20-56	Physical Interpretation of Nodal Forces and Alternative Derivation	
	of the Stiffness Matrix	542
20-6	BEAM ELEMENT	548
20-7	RECTANGULAR ELEMENT: PLATES IN BENDING	551
20-8	FINITE-STRIP METHOD FOR ANALYSIS OF ELASTIC SLABS	560
20-81	Procedure	561
20-82	Basic Functions	568
20-83	Simply Supported Strip	570
20-9	GENERAL	576
	PROBLEMS	577

, CHAPTER 21

Plastic	Analysis of Continuous Beams and Frames	579
21-1	INTRODUCTION	579
21-2	ULTIMATE MOMENT	
21-3	PLASTIC BEHAVIOR OF A SIMPLE BEAM	581
21-4	ULTIMATE STRENGTH OF FIXED-ENDED AND CON-	
	TINUOUS BEAMS	583
21-5	RECTANGULAR PORTAL FRAME	
21-51	Location of Plastic Hinges Under Distributed Loads	588
21-6	COMBINATION OF ELEMENTARY MECHANISMS	590
21-7	FRAMES WITH INCLINED MEMBERS	592
21-8	EFFECT OF AXIAL FORCES ON PLASTIC MOMENT	
	CAPACITY	594
21-9	EFFECT OF SHEAR ON PLASTIC MOMENT CAPACITY	596
21-10	GENERAL	597
	PROBLEMŚ	597

CHAPTER 22

Yield-Line and Strip Methods for Slabs

600

22-1	INTRODUCTION	600
22-2	FUNDAMENTALS OF YIELD-LINE THEORY	601
22-21	Convention of Representation	601
22-22	Ultimate Moment of a Slab Equally Reinforced in Two Perpendicular	
	Directions	603
22-3	ENERGY METHOD	604
22-4	ORTHOTROPIC SLABS	607
22-5	EQUILIBRIUM OF SLAB PARTS	611
22-51	Nodal Forces	611
22-6	EQUILIBRIUM METHOD	614
22-7	NONREGULAR SLABS	617
22-8	STRIP METHOD	620
22-9	USE OF BANDED REINFORCEMENT	622
22-10	GENERAL	625
	PROBLEMS	626

CHAPTER 23

Struct	ural Dynamics	629
23-1	INTRODUCTION	629
23-2	COORDINATE AND LUMPED MASSES	629
23-3	CONSISTENT MASS MATRIX	632
23-4	UNDAMPED FREE VIBRATION OF A SYSTEM WITH ONE	
	DEGREE OF FREEDOM	634
23-5	RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM	
	UNDAMPED SYSTEM	636
23-51	Special Case: Harmonic Force	
23-52	General Case: any Disturbing Force	637
23-6	VISCOUSLY DAMPED VIBRATION OF A SINGLE-DEGREE-	
	OF-FREEDOM SYSTEM	639
23-61	Free Viscously Damped Vibration	
23-62	Harmonically Forced, Viscously Damped Vibration	
23-63	Response to any Disturbing Force	6,43
23-7	UNDAMPED FREE VIBRATION OF A MULTIDEGREE-OF-	
	FREEDOM SYSTEM	644
23-8	ORTHOGONALITY OF THE NATURAL MODES	647
23-9	NORMAL COORDINATE	
23-10	RESPONSE OF STRUCTURES TO EARTHQUAKES	651
23-11	GENERAL	654
	PROBLEMS	654

CHAPTER 24

657

	CHALLER 27	
Comput	ation Methods 657	7
24-1	INTRODUCTION	7
24-2	DATA PREPARATION	7
24-3	COMPUTATION OF INDIVIDUAL STIFFNESS AND TRANS-	
	FORMATION MATRICES	0
24-4	ASSEMBLAGE OF STIFFNESS MATRICES	3
24-41	Assemblage by Connection Matrices	3
24-42	Assemblage by Inspection	7
24-5	INTRODUCTION OF PRESCRIBED DISPLACEMENT CON-	
	DITIONS	9
24-6	SOLUTION OF SIMULTANEOUS EQUATIONS	0
24-7	CALCULATION OF INTERNAL FORCES	6

24-8 24-81	PLASTIC ANALYSIS OF FRAMED STRUCTURES Modification of Member Stiffness Due to Development of a Plastic	678
24-01	Hinge	678
24-82	Step-by-Step Procedure	
24-9	GENERAL	
2.7		
14	APPENDIX A	(07
	x Algebra .	687
A-l	INTRODUCTION	
A-2	DEFINITIONS.	
A-3	MATRIX TRANSPOSITION	
A-4	MATRIX ADDITION AND SUBTRACTION	
A-5	MATRIX MULTIPLICATION	
A-6 A-7	PARTITIONED MATRICES	
A-7 A-8	MATRIX INVERSION	
A-0 A-9	SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS	
A-10	EIGENVALUES	
A-10	PROBLEMS	
	APPENDIX B	
Displa	cements of Prismatic Members	708
	APPENDIX C	
r :		711
rixea-	End Forces of Prismatic Members	711
	APPENDIX D	
End-F	orces Caused by End Displacements of Prismatic Members	713
	APPENDIX E	
Roact	ions and Bending Moments at Supports of Continuous Beams	
	Duit Displacement of Supports	715
Duen		715
	APPENDIX F	
Areas	and Centroids of Geometrical Figures	722
	APPENDIX G	
Torsic	onal Constants J	724
1 01 010	APPENDIX H	121
17.1		70/
Value.	s of the Integral $\int M_{\mu}M dl$	726
	APPENDIX I	
	tions of a Simple Beam of Constant EI Subjected to Unit	728
Ena-N	Aoments .	128
_	APPENDIX J	
	etrical Properties of Some Plane Areas Commonly Used in the od of Column Analogy	730
Gener	al References	731
Answa	ers to Problems	733
Additi	ional Problems Using SI Units	761
	ers to Additional Problems Using SI Units	765
	or Index	771
Subjec	et Index	773