Sequency Theory

Foundations and Applications

HENNING F. HARMUTH

DEPARTMENT OF ELECTRICAL ENGINEERING THE CATHOLIC UNIVERSITY OF AMERICA WASHINGTON, D.C.

BIBLIOTHEK
nventor-Nr.: 3492

1977

ACADEMIC PRESS New York San Francisco London

.

A Subsidiary of Harcourt Brace Jovanovich, Publishers

Contents*

Foreword	xi
PREFACE	xiii

Introduction

The Dogma of the Circle	1
The Circle and the Circular Functions in Communications	3
Basic Mathematical Concepts	7
Time and Space Signals	10
Optical Images from Acoustic Waves	10
Electromagnetic Waves with General Time Variation	11
Concepts of Communications Applied to Physics	13
A Guide to Reading	16

1. Mathematical Foundations

1.1	Orthogonal Functions		
	1.1.1	Orthogonality and Linear Independence	18
	1.1.2	Series Expansion by Orthogonal Functions	23
	1.1.3	Orthogonality and Series Expansions for a Finite	
		Number of Sampling Points	25

* Equations are numbered consecutively within each of Sections 1.1.1 to 4.7.8. Reference to an equation in a different section is made by writing the number of the section in front of the number of the equation, e.g., Eq. (211-6) for Eq. (6) in Section 2.1.1.

Illustrations and tables are numbered consecutively within each section, with the number of the section given first, e.g., Fig. 243-4, Table 313-2.

References are characterized by the name of the author(s), the year of publication, and a lowercase latin letter if more than one reference by the same author(s) is listed for that year.

CONTENTS

	1.1.4	Walsh Functions	29
	1.1.5	Hadamard Matrices	46
	1.1.6	Haar Functions	51
	1.1.7	Functions with Several Variables	53
	1.1.8	Carry-Free Operations Instead of Addition and Subtraction	64
1.2	Some	Topics of Walsh-Fourier Analysis	69
	1.2.1	Orthogonal Expansions in Finite and Infinite Intervals	69
	1.2.2	Sample and Energy Axioms	71
	1.2.3	Fast Walsh-Fourier Transform	73
	1.2.4	Fast Haar-Fourier Transform	77
	1.2.5	Carry-Free Fast Walsh-Fourier Transform	79
	1.2.6	Dyadic Shifting	85
	1.2.7	Dyadic Correlation	90
1.3	Shift 1	Invariance and Topology	94
	1.3.1	Time Variability and Shift Invariance	94
	1.3.2	Some Features of Space-Time Having the Topology of	
		the Dyadic Group with Hamming Distance	97
	1.3.3	Standing Waves in Dyadic Space-Time	103
1.4	Appli	cations to Signal Processing	107
	1.4.1	Detection of Reed-Muller Coded Signals by Means of	
		the Carry-Free Fast Walsh Transform	107
	1.4.2	Dyadic Correlation for Radar Signal Processing	111
	1.4.3	Multiple Decisions Based on Dyadic Correlation	117
	1.4.4	Circuit and General Signals for Dyadic Correlation	119

2. Electric Filters for Time and Space Signals

2.1	Filter	s for Time Signals	122
	2.1.1	Fourier Description of Filters for Time Signals	122
	2.1.2	General Unsynchronized Filters	126
	2.1.3	General Synchronized Filters	135
2.2	Generators for Time and Space Functions		143
	2.2.1	Generators for Time-Variable Walsh Functions	143
	2.2.2	Generators for Space-Variable Walsh Functions	147
2.3	Filter	s for Two-Dimensional Space Signals	151
	2.3.1	Principle of Instantaneous Filters	151
	2.3.2	Practical Filters for TV Applications	163
	2.3.3	Principle of Sampling Filters	179
	2.3.4	Sampling Filters Implemented by Liquid Crystals	185
2.4	Two-Dimensional Filters for Acoustic Image Generation		189
	2.4.1	Fourier Transform in the Medium and Inverse	
		Transform by a Filter	189
	2.4.2	Practical Equipment	200
	2.4.3	Focusing for Spherical Wavefronts	204
	2.4.4	Multiplexing Hydrophone Array and Processor	219
2.5	Instar	ntaneous Filters for Three- and Four-Dimensional Signals	227

•

•

CONTENTS

3. Electromagnetic Waves with General Time Variation

3.1	Dipole Radiation of a Current $i(t)$	235
	3.1.1 Hertzian Electric Dipole Solution of Maxwell's Equations	235
	3.1.2 Near Zone–Wave Zone Effects	246
	3.1.3 Hertzian Magnetic Dipole	248
3.2	Multipole Radiation of a Current $i(t)$	250
	3.2.1 One-Dimensional Electric Quadrupole	250
	3.2.2 Two-Dimensional Electric Quadrupole	255
	3.2.3 One-Dimensional Magnetic Quadrupole	257
3.3	Some Features of General Electromagnetic Waves	259
	3.3.1 Radiation of a Line Array of Spherical Radiators	259
	3.3.2 Reception of a Line Array of Spherical Receptors	265
	3.3.3 Doppler Effect	271
	3.3.4 Circular Polarization	273
	3.3.5 Interferometry	276
	3.3.6 Discrimination between a Radar Reflector and a Scatterer	278
	3.3.7 Nonsymmetric Polarity Effects	283
	3.3.8 Increasing the Number of Independent Radio Channels	285
3.4	Practical Radiators	293
	3.4.1 Arrays of Hertzian Dipoles	293
	3.4.2 Resonant Antennas	298
	3.4.3 Efficient Power Conversion	299
	3.4.4 Long-Wire Radiators	307
3.5	Practical Receivers	311
	3.5.1 Separation of Signals in Mobile Communications	311
	3.5.2 Selective Reception of Signals with Proper Period	314
	3.5.3 Synchronous Reception of Walsh Waves	321
3.6	Applications to Radar	330
	3.6.1 Direct Radiation of Signals and Modulation of Sinusoidal	
	Carriers	330
	3.6.2 Two-Dimensional Autocorrelation Function of an Amplitude-	
	Modulated Sinusoidal Carrier	332
	3.6.3 Two-Dimensional Autocorrelation Function of an Amplitude-	
	Modulated Walsh Carrier	334
	3.6.4 Range Resolution without Doppler Shift	336
	3.6.5 Doppler Resolution for Known Range	337
	3.6.6 Pulse Compression, Chirp Radar	340
	3.6.7 Chirp Radar with Doppler Resolution	343
3.7	Angular Resolution of Sampled Receptor Arrays	347
	3.7.1 Reception of Certain Nonsinusoidal Waves	347
	3.7.2 The Classical Limit of Resolution for Sinusoidal Waves	357
	3.7.3 Sampled Receptor Array for Sinusoidal Functions	301
	3,7.4 Resolution and Noise	370
	5.7.5 Simultaneous Arriving Signals	202
20	3.7.0 Linear Transformation Combined with Sampling	382
3.8	LUCOTAL REMARKS	200
	3.8.1 Solutions of the wave Equation	388
	3.8.2 Frequently Raised Objections	392

4. Concepts of Communications Applied to Physics

4.1	The S	pectral Decomposition of Light	400
	4.1.1	Time-Invariant Diffraction Grating	400
	4.1.2	Time-Variable Diffraction Grating	401
4.2	On th	e Topology of Space–Time	404
	4.2.1	Real Numbers versus Dyadic Group as Basis for Models	
		of Space–Time	404
	4.2.2	Integer-Number Shifting and Dyadic Shifting	407
	4.2.3	Where to Find Manifestations of Non-Real-Number Topologies	415
4.3	Schrö	dinger and Klein-Gordon Difference Equations	419
	4.3.1	Time Dependence of the Solutions of Partial Difference Equations	419
	4.3.2	Schrödinger Equation	421
4.4	Schrö	dinger Difference Equation with Coulomb Field	427
	4.4.1	Separation of Variables for a Centrally Symmetric Field	427
	4.4.2	Discrete Eigenvalues in a Coulomb Field	429
	4.4.3	Time-Variable Solutions	435
4.5	Klein	-Gordon Difference Equation with Coulomb Field	436
	4.5.1	Separation of Variables, Initial-Value Problem	436
	4.5.2	Discrete Eigenvalues of Bosons in a Coulomb Field	438
	4.5.3	Asymptotic Solution	443
	4.5.4	Convergent Solution	443
	4.5.5	Free Particles in a Coulomb Field	448
	4.5.6	Independence Relation	450
4.6	Dirac	Difference Equations with Coulomb Field	451
	4.6.1	Iterated Dirac Equation	451
	4.6.2	Linearized Dirac Equations	460
4.7	Math	ematical Supplements	464
	4.7.1	Right and Left Difference Quotient	464
	4.7.2	Independence Relation in Three-Dimensional Cartesian	
		Coordinates	465
	4.7.3	Polynomials as Solutions of Difference Equations of	
		Second Order	466
	4.7.4	Difference Equation of the Discrete Spherical Functions	470
	4.7.5	Convergence of the Solution of the Klein-Gordon	
		Difference Equation with Coulomb Field	475
	4.7.6	Convergence for $r = 0$	477
	4.7.7	Orthogonality of the Eigenfunctions	479
	4.7.8	Generalization of Green's Formula	481

References

INDEX

;

х

483