GEOLOGICAL SOCIETY SPECIAL PUBLICATION NO. 264

Compositional Data Analysis in the Geosciences: From Theory to Practice

EDITED BY

A. BUCCIANTI Univerisità degli Studi di Firenze, Italy

G. MATEU-FIGUERAS

Universitat e Girona, Spain

and

V. PAWLOWSKY-GLAHN

Universitat de Girona, Spain

B 29 266

Institut für Angewandte Geowissenschaften TUDarmstadt

Standort Rethe

2006 Published by The Geological Society & London

Contents

Preface	vii	
PAWLOWSKY-GLAHN, V. & EGOZCUE, J. J. Compositional data and their analysis: an introduction	1	
Applications to the solution of real geological problems		
Ó.Kovács, L., Kovács, G. P., Martín-Fernández, J. A. & Barceló-Vidal, C. Major-oxide compositional discrimination in Cenozoic volcanites of Hungary	11	
THOMAS, C. W. & AITCHISON, J. Log-ratios and geochemical discrimination of Scottish Dalradian limestones: a case study	25	
GORELIKOVA, N., TOLOSANA-DELGADO, R., PAWLOWSKY-GLAHN, V., KHANCHUK, A. & GONEVCHUK, V. Discriminating geodynamical regimes of tin ore formation using trace element composition of cassiterite: the <i>Sikhote'Alin</i> case (Far Eastern Russia)	43	
REYMENT, R. A. On stability of compositional canonical variate vector components	59	
BUCCIANTI, A., TASSI, F. & VASELLI, O. Compositional changes in a fumarolic field, Vulcano Island, Italy: a statistical case study		
WELTJE, G. J. Ternary sandstone composition and provenance: an evaluation of the 'Dickinson model'	79	
Software and related issues		
THIÓ-HENESTROSA, S. & MARTÍN-FERNÁNDEZ, J. A. Detailed guide to CoDaPack: a freeware compositional software	101	
VAN DER BOOGAART, K. G. & TOLOSANA-DELGADO, R. Compositional data analysis with 'R' and the package 'compositions'		
BREN, M., BATAGELJ, V. Visualization of three- and four-part (sub)compositions with R	129	
General theory and methods		
EGOZCUE, J. J. & PAWLOWSKY-GLAHN, V. Simplicial geometry for compositional data	145	
	1/1	

n

л Е

16

DAUNIS-I-ESTADELLA, J., BARCELÓ-VIDAL, C. & BUCCIANTI, A. Exploratory 161 compositional data analysis

i	CONTENTS	
BUCCIANTI, A., MATEU	J-FIGUERAS, G. & PAWLOWSKY-GLAHN, V. Frequency al laws in geochemistry	175
ARTÍN-FERNÁNDEZ, . spects for composition	J. A. & THIÓ-HENESTROSA, S. Rounded zeros: some practical nal data	191
BARRABÉS, E. & MAT: some topological cond	EU-FIGUERAS, G. Is the simplex open or closed? cepts)	203
ndex		207

E

I

analyses, geochemic sand-silt-clay sedim Since Karl Pearson spurious correlation b said and written about compositional data, as Felix Chayes. His G-2 granite sample a and standardization techniques between di most igneous (and m achieved a stable n chemical-free energy, limited by the phase rule are, in order of decrea feldspar (43%), micro (21%), biotite (6%) an erals. Following Chay between the percentag is predictable for qua showing a strong a since an increase in th arily displaces the co degree. Minor compon positive correlation w with plagioclase. Mor dant components may correlation, such as Chayes pointed out, su problems for conventio generating, for exampl relation values. Consec correlations are just as (and meaningless fron as the negative ones, e of major components.

Compositions are poper poper a rel

parts to a whole; there usually 1 or 100. C and important kind of they appear in many g

The most important the issue was made in Aitchison proposed seminal work has bro spective to the stati general, not only comp strictly positive data,