

GMD-BERICHT NR. 282

GMD – FORSCHUNGSZENTRUM INFORMATIONSTECHNIK GMBH

Vladimir B. Dmitriev-Zdorov Multicycle Generalization of Relaxation-Based Algorithms for Circuit and System Simulation

Contents

1. Introduction	1
2. Relaxation-Based Techniques and the Convergence Problem	5
2.1. Direct and relaxation-based algorithms for circuit analysis	.5
2.2. Solution of algebraic equations by relaxation methods	.10
2.3. Relaxation-based methods to solve the dynamic circuit	
equations	16
2.4. The ways to accelerate the convergence of relaxation-based	
methods and positioning the problem	.24
3. The Construction of Multicycle Iterative Algorithm to Solve	
Linear Systems of Circuit Equations	29
3.1. Multicycle generalization of a basic iterative algorithm	.29
3.2. Multicycle iterative algorithm with damping	.35
3.3. The canonical form of multicycle iterative algorithm and its	
equivalent circuit representation	.43
3.4. Summary	. 50
4. Implementation of Multicycle Iterative Algorithms	52
4.1. MIA with fixed number of internal iterations	.52
4.2. Optimization of MIA for the total number of iterations	58
4.3. Displaced and nondisplaced MIA	. 63
4.4. Summary	.77
5. Multicycle Iterative Algorithms for Nonlinear Circuit Analysis	79
5.1. The canonical structure of MIA in nonlinear case	.79
5.2. Convergence of MIA applied to a system of nonlinear algebr	aic
equations	.83
5.3. Examples of MIA's application to nonlinear circuit analysis	.85
5.4. Summary	.92
6. Multicycle Generalization of Waveform Relaxation Method	93
6.1. The canonical description of the multicycle waveform relaxation	tion
(MWR) iterations	93

6.2. The convergence of the multicycle waveform relaxation
method101
6.3. Examples of MWR applied to the transient circuit analysis 104
6.4. Summary109
7. The Multicycle and the Modified Coupling Approach in Circuit
and System Simulation 112
7.1. The multicycle techniques and the coupling patterns
7.2. The use of <i>I</i> -type coupling patterns in the decomposed
circuit112
7.3. Generalized coupling and suppressing the local feedback in the
decomposed circuit126
7.4. Generalized coupling and the multicycle approach in the mixed
system simulation
7.5. Summary
8. Conclusion 148

•