PROCEEDINGS

OF THE

2nd MINI CONFERENCE ON

CONTACT MECHANICS AND WEAR OF RAIL/WHEEL SYSTEMS

Budapest, 29 - 31 July, 1996.

Edited by

Prof. István Zobory

TECHNICAL UNIVERSITY OF BUDAPEST

Faculty of Transportation Engineering

Department of Railway Vehicles

CONTENTS

PREFACE	9
KALKER, J. J.: Book of Tables for the Hertzian Creep-Force	11
HARDER, R. F MEEKISHO, L. L JONES, J RHOADES, V.: Generalized Approximations of Wheel-Rail Creep Forces and Contact Patch Frictional Work Using Neural Network Simulation	21
KNOTHE, K THEILER, A.: Normal and Tangential-Contact-Problem with Rough Surfaces	34
NIELSEN, J. B THEILER, A: Tangential Contact Problem with Friction Coefficients Depending on Sliding Velocity	44
KIK, W PIOTROWSKI, J.: A Fast, Approximate Method to Calculate Normal Load at Contact between Wheel and Rail and Creep Forces During Rolling	52
MESHCHERJAKOV, V.: Shock Interaction of a Wheel-Couple with a Railway	62
ESVELD, C GRONSKOV, L.: MINIPROF Wheel and Rail Measurement	69
OHTAKE. T KURODA, J TAKESHITA, K SATO, Y.: Control of Rail Roughness on Tokaido Shinkansen through Practical Use of Measuring Trolley	76
DRASLOV, J JUNG, P DANNESKIOLD-SAMSOE, U.: Automatic On-Line Monitoring of Tread Defects and Flange Wear. Eight Years of Practical Experience	86
OUKHELLOU, L AKNIN, P BLENO, H PLAGNE, J.: Eddy Current Sensor for Automatic Inspection of the Rail Head	96
BENEDEK, T.: On the Application of the Vehicle System Dynamics in the Wheel-Rail Inspection System	105
CORAZZA, G. R DI MANICI, A MALAVASI, G MARCONE, M.: The Wheel as Sensor in Dynamics of Wheel-Rail System - Geometrical Peculiarities of the Radial Stress Pattern	110
OROSZVÁRY, L GAJDÁR, T KORONDI, P.: Possibilities to Influence Wheel/Rail Contact Wear through Modern Control	119
LUKÁCS, J.: Fatigue Crack Growth in Railway Rail Steels under I and I + II Loading Conditions	129
BOGDAŃSKI, S OLZAK, M STUPNICKI J.: Influence of Liquid Interaction on Propagation of Rail Rolling Contact Fatigue Cracks	134
BROWN, M. W HEMSWORTH, S WONG S. L ALLEN, R. J.: Rolling Contact Fatigue Crack Growth in Rail Steel	144

EKBERG, A.: Rolling Contact Fatigue of Railway Wheels - Computer Modelling and In-Field Data	154
BOGDAŃSKI, S OLZAK, M STUPNICKI, J.: The Effect of Face Friction and Tractive Force on 3D "SQUAT" Type of Rollig Contact Fatigue Crack	∪ 1 <i>6</i> 4
KECSKÉS, S KISS, Cs SZEMÁN, L. Comparison of Home Made Rails with Import Rails and Determination of Probable Rail-Lifetime by Tensile Test of Notched Specimen	17 ^{\(\)}
KECSKÉS, S KISS, Cs.: Cause of Formed Valley at the Welding Bead Noticed by the Supervisory Staff of the Track Maintenance	185
SZABÓ, A - ZOBORY, I.: On Combined Simulation of Rail/Wheel Profile Wear	196
CHUDZIKIEWICZ, A.: Evolution of the Simulation Study of a Railway Wheel Trough Wear	207
LINDER, Ch BRAUCHLI, H.: Prediction of Wheel Wear	215
KRETTEK, O.: About the Influence of the Wheel-Profile of Self-Steering Wheel- Sets on the Amount of Wear	224
CASINI, C TACCI, G.: The Geometrical Construction of the FS DR Wheel Profile	235
BREKKE, D. J.: Wheel/Rail Profile Studies	243
USHKALOV, V. F.:: Wheelset and Rail Wear on Ukrainian Railways	250
BLOKHIN, E DANOVICH, V KOROTENKO, M MANASHKIN, L.: Estimation of the Wheel and Rail Wear Using the Mathematical Model of the "Train-Vehicle-Track" System	259
KRETTEK, O SZABÓ, A BÉKEFI, E ZOBORY, I.: On Identification of Wear Coefficient Used in the Dissipated Energy based Wear-Hypothesis	260
MALAVASI, G.: Wheelset Vibrations and Rail Wear	266
BAKER, P NEWTON, S.: Wheel and Rail Wear on London Underground - The Problems and Solutions	275
NAGY, V BOZÓKY, L.: Wear Reduction by Means of Flange Lubrication	287
BLOKHIN, E DANOVICH, V MYAMLIN, S LITWIN, V.: Influence of Railway Vehicle Models Degree of Detail on the Results of Wheel Wear Prediction	297
IGELAND, A ILIAS, H.: Rail Head Wear Calculations Based on High Frequency Wheelset/Track Interaction / A Comparison between Non- Linear and Linear Models	304

HEMPELMANN, K GROSS-THEBING, A HOVELMANN, A -	
ZIMMER, H.: SFE AKUSRAIL - A High Frequency Wheel-Rail	
Interaction Model for the Prediction of Rail Corrugation Growth and Noise	315
SUDA, Y NISHIGAITO, T OKAMOTO, K KOMINE, H.: Creep Characteristics with High Damping Alloy for Corrugation Phenomenon	325
WU, W. X SMITH, J. H BRICKLE, B. V LUO, R. K.: The Effects of Misaligned Wheelsets and Rolling Surface Conditions on the Formation of Rail Corrugations	
KUZMA, L KOVÁCS, I.: Corrugations on Electric Tramway and its Maintenance	341
LIST OF PARTICIPANTS	351