BRIDGE SUBSTRUCTURE AND FOUNDATION DESIGN

Contents

	PREF	ACE	xiii
CHAPTER 1	INTRO	DDUCTION AND GENERAL PRINCIPLES	1
	1.1	Bridge Engineering and Aesthetics 1	
	. 1.2	Pier Types 4	
	1.3	Abutment Types 19	
	1.4	Abutment Walls 27	
	1.5	Foundation Types 30	
	1.6	Subsurface Exploration and Foundation Investigations 44	
	1.7	Specifications and Standards 53	
	1.8	Cost Correlation, Superstructure versus Substructure 56	
	1.9	Design Example 1–1 61	
		References 69	
CHAPTER 2	LOAD	S AND LOADING GROUPS	72
	2.1	General Considerations 72	
	2.2	Permanent Loads 74	
	2.3	Transient Loads 80	
	-2.4	Force Effects from Superimposed Deformations 88	
	2.5	Forces on Substructure 89	
	2.6	Earthquake Effects 97	
	2.7	Transfer of Loads from Superstructure to Substructure 98	
	2.8	Distribution of Longitudinal Forces to Fixed and Expansion Piers 10	3
	2.9	Numerical Examples 112	
	2.10	Load Combinations and Load Factors 117	

2.11	Case Study,	Ice Load on Bridges	123
	References	125	

CHAPTER 3	METH	ODS OF ANALYSIS AND DESIGN	127
	3.1	General Principles 127	
	3.2	Service Load Design Method (Allowable Stress Design, ASD) 129	
	3.3	Reliability and Uncertainty in Design 131	
	3.4	Alternate Approach to Limit States 135	
	3.5	AASHTO Strength Design Method, Reinforced Concrete Structures 138	
	3.6	LRFD Principles of Strength Design (AASHTO, 1994 Specifications)	140
	3.7	Design for Thermal Effects 142	
	3.8	Shrinkage and Creep (LRFD Specifications) 145	,
	3.9	Design for Vessel Collision 147	
	3.10	Basic Philosophy of Seismic Design 149	
	3.11	Requirements of Reinforced Concrete in Seismic Design 152	
		Tolerable Differential Movement and Settlement of Bridges 165	
	3.13	Design Example 3–1, Settlement 173	
er e		Case Study, Forces Induced by Settlement 175	
•	3.15	Design Requirements for Bridges in Waterways 177 References 181	
OUADTED 4	DIED	S FOR CONVENTIONAL PRINCES	104
CHAPTER 4		S FOR CONVENTIONAL BRIDGES	184
	4.1	Pier Types 184	
	4.2	Criteria for Pier Selection 185	
	4.3	Loads and Moments on Piers: End Conditions 187	
	4.4	Effect of Temperature Change and Shrinkage 198	
	4.5	Seismic Design Considerations for Piers and Columns 201	
,	4.6	Structural Capacity under Combined Axial Compression and Bending 203	
	4.7	Section Analysis 212	
	4.8	Structural Capacity of Composite Columns 217	
	4.9	Design Example 4–1: Single Shaft Pier (Load Factor Design) 220	
	4.10	Design Example 4–2: Hammerhead Pier 234	
	4.11	Design Example 4–3: Steel Bent Cap 242	
		Design Example 4–4: Steel Bent Cap for Torsional Loading 247	
		General Principles of Pier Frame Analysis 252	
		Design Example 4–5: Multiple Column Pier 261	
	4.15	Design Example 4–6: Pier Integral with Superstructure 266	

	4.16	Pier Trestles 280	
	4.17	Pier Protection Design Provisions in Navigable Waterways 281	
	4.18	Design Example 4–7: Bridge Protection in Waterways 288	
	4.19	Design Example 4–8: Pier Stability Under Stream Flow 293	
		References 294	
CHAPTER 5	PIERS	FOR SPECIAL BRIDGES	298
	5.1	Structural Interaction of Elastic Piers in Multi-Span Arch Bridges 298	
	5.2	Towers for Suspension Bridges 302	
	5.3	Towers and Pylons for Cable-Stayed Bridges 311	
	5.4	Piers for Segmental Concrete Bridges 329	Y
	5.5	Piers for Movable Bridges 361	
	5.6	Supports Integral with Superstructure 367	
		References 379	
CHAPTER 6	WALL	. SYSTEMS	381
	6.1	Diaphragm Walls in Traffic Underpasses 381	
	6.2	Gravity and Semi-Gravity Walls 392	
-	6.3	Mechanically Stabilized Earth Walls and Prefabricated	
		Modular Walls 395	
	6.4	Ground Movement in Excavations 396	
	6.5	Design Principles of Diaphragm Walls 402	
	6.6	Design Principles of Gravity and Semi-Gravity Walls 416	
	6.7	Commentary on Mechanically Stabilized Earth Walls 425	
	6.8	Commentary on Prefabricated Modular Walls 428	
	6.9	Design Example 6–1, Traffic Underpass 430	
	6.10	Design Example 6–2, Anchored Diaphragm Wall 435	
	6.11	Design Example 6–3, Stability of Ground-Anchored Wall System 437	
	6.12	Design Example 6–4, Posttensioned Diaphragm Wall 439	
	6.13	Seismic Design Requirements of Wall Systems 443	
		References 446	
CHAPTER 7	ABUT	MENTS	449
	7.1	Top of Abutment Details and Treatment 449	
	7.2	Pile Bent (Stub) Abutments, Design Considerations 452	
	7.3	Closed (Full) Abutments, Design Considerations 454	
	7.4	Gravity and Semi-Gravity Abutments,	
		Design Considerations 456	
	7.5	Abutments on Mechanically Stabilized Earth Walls 456	

CHAPTER 8

CHAPTER 9

7.0	Abutments on Modular Systems 456		
7.7	Wing Walls 459		
7.8	Abutments for Segmental Bridges 461		
7.9	Seismic Design of Abutments 465		
	Design Example 7–1, Pile Bent Abutments, ASD Method 473		
	Design Example 7–2, Full Abutment 479		
	Design Example 7–3, Spill-Through Abutment 486		
7.13	Design Example 7–4, Abutment of a Simple Span Deck Truss Bridge 492		
7.14	Abutments for Arch Bridges 496		
7.15	Abutments for Suspension Bridges 500		
7.16	Integral Abutments 503		
7.17	Prefabricated Concrete Sections 508		
	References 508		
FOOT	INGS		
8.1	Factors Affecting Selection of Foundation Type 510		
8.2	Footing Types 514		
8.3	Bearing Capacity Theories 515		
8.4	Presumptive Bearing Pressures 523		
8.5	Bearing Pressures from Tests 523		
8.6	Bearing Resistance of Rock 526		
8.7	Failure by Sliding 529		
8.8	AASHTO and LRFD Requirements 529		
8.9	Settlement of Footings in Soil, Methods of Analysis 531		
8.10	Settlement of Footings in Rock 544		
8.11	Structural Action of Footings 546		
8.12	Flexural Strength of Modified Square Footing, Case Study 557		
8.13	Strut-and-Tie Model (LRFD Specifications) 561		
8.14	Design Example 8–1, Bearing Capacity by ASD 565		
8.15	Design Example 8–2, Settlement of Footings 570		
8.16	Design Example 8–3, Footing in Rock 573		
8.17	Design Example 8–4, Bearing Capacity by Strength Design 576		
8.18	Design Example 8–5, Load Factor Design 576		
8.19	Design Example 8–6, Strip Footing 579		
	Seismic Design Requirements 580		
	References 584		
DD:://	-N BU 50		
UHIVE	EN PILES		

588

510

- 9.1 Soil-Pile Interaction 588
- 9.2 Pile Types and Selection Criteria 595

9.3	Design Considerations 603	
9.4	Design Approach 606	
9.5	Movement and Bearing Resistance at the Service Limit State	609
9.6	Design of Piles for Axial Load, Structural Capacity 613	
9.7	Design of Piles for Axial Load, Geotechnical Capacity of Single Pile 618	
9.8	Bearing Capacity of Pile Groups 631	
9.9	Uplift Considerations 632	
9.10	Negative Skin Friction 634	
9.11	Pile Foundations Under Lateral Loads 636	
9.12	Structural Capacity of Piles Subjected to Axial Load and Bending 655 ′	
9.13	Design Examples 662	
9.14	Bridge Foundations Without Piles 670	
	References 674	
DRILL	ED SHAFT FOUNDATIONS	678
`		0.0
10.1	Assessment of Construction Methods 678	
10.2	Practical Considerations 681	
10.3	Usual Defects and Repairs 683	
10.4	AASHTO Requirements 684	
10.5	Design Requirements 687	
10.6	Generalized Design Approach 690	
10.7	Structural Capacity for Axial Load 693	
10.8	Geotechnical Strength (Bearing Capacity), Axially Loaded Shafts 695	•
10.9	Bearing Capacity from Load Tests 701	
10.10	Axial Resistance in Rock 704	
10.11	Group Action 707	
10.12	Safety Factors for ASD 709	•
10.13	Settlement Considerations 710	
10.14	Negative Skin Resistance (Downdrag) 715	
10.15	Uplift Resistance 716	
10.16	Drilled Shafts under Lateral Load 717	
10.17	Flexural Analysis, Laterally Loaded Shafts 729	
10.18	Design Examples 734	
	References 750	
PRISI	MATIC AND LINEAR FOUNDATIONS	753

CHAPTER 10

CHAPTER 11

11.1 Shapes and Configurations 75311.2 Construction Considerations 754

	11.3	The Transfer of Axial Load: Basic Concepts 759
	11.4	Data from Load Tests 760
	11.5	Guidelines for the Design of Load Bearing Linear and Prismatic Elements 765
	11.6	Structural Capacity for Axial Load 766
	11.7	Geotechnical Capacity: Axial Load in Cohesive Soils 767
	11.8	Geotechnical Capacity: Axial Load in Cohesionless Soils 768
	11.9	Axial Resistance in Rock 770
	11.10	Group Action 770
	11.11	Settlement Considerations 771
	11.12	Downdrag and Uplift 773
	11.13	Effects of Lateral Load 774
	11.14	Structural Capacity Under Bending and Axial Load 778
	11.15	Design Example 11–1 779
		References 781
CHAPTER 12	STRE	NGTHENING AND REHABILITATION
	12.1	Design Options to Reduce Maintenance and Repair 783
	12.2	Procedures for Detecting Defects and Deterioration 786
	12.3	Assessment of Deficiencies of Substructures Below the Water Line 791
	$1\dot{2}.4$	Repair of Scour Damage 796
	12.5	Methods for Strengthening Substructures 802
,	12.6	Replacement and Repair Methods 809
	12.7	Repair and Methods to Arrest Concrete Deterioration Below the Water Line 821
	12.8	Example of Inspection Guidelines: Assessment of Underwater Concrete 824
	12.9	Example of Structural Capacity Analysis 825
	12.10	Example of Bridge Rehabilitation 828
		References 834
,	· INDEX	a.
	INDEX	A

783

839