Luca Bertolini, Bernhard Elsener, Pietro Pedeferri, Rob Polder

# <sup>*b*</sup> Corrosion of Steel in Concrete

Prevention, Diagnosis, Repair



)

WILEY-VCH Verlag GmbH & Co. KGaA

## Contents

 $\langle r \rangle$ 

|       | Preface V                                         |  |  |  |
|-------|---------------------------------------------------|--|--|--|
|       | Foreword IX                                       |  |  |  |
|       | Part I                                            |  |  |  |
|       | Properties of Cementitious Materials 1            |  |  |  |
| 1     | Cements and Cement Paste 3                        |  |  |  |
| 1.1   | Cement Types and Hydration Reaction 3             |  |  |  |
| 1.2   | Porosity and Transport Processes 5                |  |  |  |
| 1.2.1 | Water/cement Ratio and Curing 6                   |  |  |  |
| 1.2.2 | Porosity, Permeability and Percolation 8          |  |  |  |
| 1.3   | Blended Cements 10                                |  |  |  |
| 1.3.1 | Pozzolanic Materials 10                           |  |  |  |
| 1.3.2 | Ground Granulated Blast Furnace Slag 12           |  |  |  |
| 1.3.3 | Properties of Blended Cements 12                  |  |  |  |
| 1.4   | Common Cements 14                                 |  |  |  |
| 1.5   | Other Types of Cement 17                          |  |  |  |
| 2     | Transport Processes in Concrete 21                |  |  |  |
| 2.1   | Composition of Pore Solution and Water Content 22 |  |  |  |
| 2.1.1 | Composition of Pore Solution 23                   |  |  |  |
| 2.1.2 | Water in Concrete 23                              |  |  |  |
| 2.1.3 | Water Content and Transport Processes 26          |  |  |  |
| 2.2   | Diffusion 28                                      |  |  |  |
| 2.2.1 | Stationary Diffusion 28                           |  |  |  |
| 2.2.2 | Non-stationary Diffusion 29                       |  |  |  |
| 2.2.3 | Diffusion and Binding 32                          |  |  |  |
| 2.3   | Capillary Suction 32                              |  |  |  |
| 2.4   | Permeation 34                                     |  |  |  |
| 2.4.1 | Water Permeability Coefficient 34                 |  |  |  |
| 2.4.2 | Gas Permeability Coefficient 35                   |  |  |  |
| 2.5   | Migration 36                                      |  |  |  |

•

- XII Contents
  - 2.5.1 Ion Transport in Solution 36
  - 2.5.2 Ion Transport in Concrete 37
  - 2.5.3 Resistivity of Concrete 38
  - 2.6 Mechanisms and Significant Parameters 39

## 3 Degradation of Concrete 49

- 3.1 Freeze-thaw Attack 50
- 3.1.1 Mechanism 51
- 3.1.2 Factors Influencing Frost Resistance 52
- 3.1.3 Air-entrained Concrete 53
- 3.2 Attack by Acids and Pure Water 55
- 3.2.1 Acid Attack 55
- 3.2.2 Biogenic Sulfuric Acid Attack 56
- 3.2.3 Attack by Pure Water 57
- 3.2.4 Ammonium Attack 58
- 3.3 Sulfate Attack 58
- 3.3.1 Mechanism 58
- 3.3.2 Protection 59
- 3.4 Alkali Silica Reaction 60
- 3.4.1 Alkali Content in Cement and Pore Solution 60
- 3.4.2 Alkali Silica Reaction (ASR) 62
- 3.5 Attack by Seawater 64

#### Part II

#### Mechanisms of Corrosion 69

### 4 General Aspects 71

- 4.1 Initiation and Propagation of Corrosion 71
- 4.1.1 Initiation Phase 71
- 4.1.2 Propagation Phase 72
- 4.2 Corrosion Rate 73
- 4.3 Consequences 74
- 4.4 Behaviour of Other Metals 76

### 5 Carbonation-induced Corrosion 79

- 5.1 Carbonation of Concrete 79
- 5.1.1 Penetration of Carbonation 80
- 5.1.2 Factors that Influence the Carbonation Rate 80
- 5.2 Initiation Time 85
- 5.2.1 Parabolic Formula 85
- 5.2.2 Other Formulas 86
- 5.3 Corrosion Rate 86
- 5.3.1 Carbonated and Chloride-contaminated Concrete 89

Ø

- 6 Chloride-induced Corrosion 91
- 6.1 Pitting Corrosion 92
- 6.2 Corrosion Initiation 93
- 6.2.1 Chloride Threshold 94
- 6.2.2 Chloride Penetration 98
- 6.2.3 Surface Content  $(C_s)$  100
- 6.2.4 Apparent Diffusion Coefficient 102
- 6.3 Corrosion Rate 104

## 7 Electrochemical Aspects 109

- 7.1 ·· Electrochemical Mechanism of Corrosion 109
- 7.2 Non-carbonated Concrete without Chlorides 112
- 7.2.1 Anodic Polarization Curve 112
- 7.2.2 Cathodic Polarization Curve 114
- 7.2.3 Corrosion Conditions 115
- 7.3 Carbonated Concrete 116
- 7.4 Concrete Containing Chlorides 118
- 7.4.1 Corrosion Initiation and Pitting Potential 118
- in 7.4.2 Propagation 119
  - 7.4.3 Repassivation 120
  - 7.5 Structures Cathodically or Anodically Polarized 121
  - 8 Macrocells 125
  - 8.1 Structures Exposed to the Atmosphere 125
  - 8.2 Buried Structures and Immersed Structures 127
  - 8.3 Electrochemical Aspects 130

## 9 Stray-current-induced Corrosion 135

- 9.1 DC Stray Current 136
- 9.1.1 Alkaline and Chloride-free Concrete 136
- 9.1.2 Passive Steel in Chloride-contaminated Concrete 141
- 9.1.3 Corroding Steel 142
- 9.2 AC Stray Current 142
- 9.3 High-strength Steel 143
- 9.4 Inspection 144
- 9.5 Protection from Stray Current 145

## 10 Hydrogen-induced Stress-corrosion Cracking 147

- 10.1 Stress-corrosion Cracking (SCC) 147
- 10.2 Failure under Service of High-strength Steel 149
- 10.2.1 Crack Initiation 149
- 10.2.2 Crack Propagation 150
- 10.2.3 Fast Propagation 151
- 10.2.4 Critical Conditions 152
- 10.2.5 Fracture Surface 153

#### XIV Contents

- 10.3 Metallurgical, Mechanical and Load Conditions 155
- 10.3.1 Susceptibility of Steel to HI-SCC 156
- 10.4 Environmental Conditions 157
- 10.5 Hydrogen Generated During Operation 158
- 10.6 Hydrogen Generated before Ducts are Filled 161

## Part III

Prevention 163

- 11 Design for Durability 165
- 11.1 Conditions of Aggressiveness 166
- 11.2 Concrete Quality 168
- 11.3 Cracks 172
- 11.4 Thickness of the Concrete Cover 174
- 11.5 Service-life Modelling and Refined Methods for Service-life Design 175
- 11.5.1 Evaluation of the Service Life with Respect to Carbonation 177
- 11.5.2 Evaluation of the Service Life with Respect to Chloride Penetration 177
- 11.6 Performance-based Service-life Design According to DuraCrete 178
- 11.6.1 Initiation Time for Carbonation-induced Corrosion 181
- 11.6.2 Propagation Time for Carbonation- (and Chloride)-induced Corrosion 181
- 11.6.3 Initiation Time for Marine Structures 182
- 11.6.4 Design Equation for Chloride-induced Corrosion Initiation 183
- 11.6.5 Tabulated Values 185
- 11.6.6 Safety Factors 186
- 11.6.7 Calculation and Results 186
- 11.6.8 Concluding Remarks 187
- 11.7 Additional Protection Measures 187
- 11.7.1 Preventative Measures in the Presence of Chlorides 189

#### 12 Concrete Technology for Corrosion Prevention 193

- 12.1 Constituents of Concrete 193
- 12.1.1 Cement 193
- 12.1.2 Aggregates 194
- 12.1.3 Mixing Water 195
- 12.1.4 Admixtures 195
- 12.2 Properties of Fresh and Hardened Concrete 196
- 12.2.1 Workability 196
- 12.2.2 Strength 198
- 12.2.3 Deformation 201
- 12.2.4 Shrinkage and Cracking 201
- 12.3 Mix Design 202
- 12.4 Concrete Manufacturing 204
- 12.4.1 Mixing, Handling, Placement, and Compaction 205
- 12.4.2 Curing 206
- 12.5 Design Details 208

þŊ

- 12.6 Concrete with Special Properties 210
- 12.6.1 Concrete with Mineral Additions 210
- 12.6.2 High-performance Concrete (HPC) 212
- 12.6.3 Self-compacting Concrete (SCC) 212

## 13 Corrosion Inhibitors 217

- 13.1 Mechanism of Corrosion Inhibitors 218
- 13.2 Mode of Action of Corrosion Inhibitors 218
- 13.3 Corrosion Inhibitors to Prevent or Delay Corrosion Initiation 219
- 13.4 Corrosion Inhibitors to Reduce the Propagation Rate
  - of Corrosion 223
- 13.5 Transport of the Inhibitor into Mortar or Concrete 224
- 13.6 Field Tests and Experience with Corrosion Inhibitors 226
- 13.7 Critical Evaluation of Corrosion Inhibitors 227
- 13.8 Effectiveness of Corrosion Inhibitors 228

## **Surface Treatments** 231

- 14.1 General Remarks 231
- 14.2 Organic Coatings 233
- 14.2.1 Properties and Testing 234
- 14.2.2 Performance 236

in

- 14.3 Hydrophobic Treatment 237
- 14.3.1 Properties and Testing 239
- 14.3.2 Performance 240
- 14.4 Treatments that Block Pores 241
- 14.5 Cementitious Coatings and Layers 242
- 14.6 Concluding Remarks on Effectiveness and Durability of Surface Treatments 243

## 15 Corrosion-resistant Reinforcement 249

- 15.1 Steels for Reinforced and Prestressed Concrete 249
- 15.1.1 Reinforcing Bars 249
- 15.1.2 Prestressing Steel 251
- 15.1.3 Corrosion Behaviour 252
- 15.2 Stainless-Steel Rebars 253
- 15.2.1 Properties of Stainless-Steel Rebars 253
- 15.2.2 Corrosion Resistance 255
- 15.2.3 Coupling with Carbon Steel 258
- 15.2.4 Applications and Cost 260
- 15.3 Galvanized-Steel Rebars 261
- 15.3.1 Properties of Galvanized-steel bars 261
- 15.3.2 Corrosion Resistance 263
- 15.4 Epoxy-coated Rebars 264
- 15.4.1 Properties of the Coating 265
- 15.4.2 Corrosion Resistance 265

#### XVI Contents

|  | 15.4.3 | Practical | Aspects | 266 |
|--|--------|-----------|---------|-----|
|--|--------|-----------|---------|-----|

15.4.4 Effectiveness 266

Part IV Diagnosis 271

## 16 Inspection and Condition Assessment 273

- 16.1 Visual Inspection and Cover Depth 273
- 16.2 Electrochemical Inspection Techniques 276
- 16.2.1 Half-cell Potential Mapping 277
- 16.2.2 Resistivity Measurements 283
- 16.2.3 Corrosion Rate 287
- 16.3 Chemical Analysis of Concrete 291
- 16.3.1 Carbonation Depth 291
- 16.3.2 Chloride Determination 292

#### 17 Monitoring 299

- 17.1 Introduction 299
- 17.2 Monitoring with Non-electrochemical Sensors 300
- 17.3 Monitoring with Electrochemical Sensors 305
- 17.4 Critical Factors 307
- 17.5 On the Way to "Smart Structures" 308

#### Part V

Repair 313

## 18 Principles and Methods for Repair 315

- 18.1 Repair Options 315
- 18.2 Basic Repair Principles 319
- 18.3 Repair Methods for Carbonated Structures 320
- 18.3.1 Repassivation 320
- 18.3.2 Reduction of the Moisture Content of the Concrete 323
- 18.3.3 Coating of the Reinforcement 323
- 18.4 Repair Methods for Chloride-contaminated Structures 324
- 18.4.1 Repassivation 324
- 18.4.2 Cathodic Protection 326
- 18.4.3 Other Methods 327

## 19 Conventional Repair 329

- 19.1 Assessment of the Condition of the Structure 329
- 19.2 Removal of Concrete 330
- 19.2.1 Definition of Concrete to be Removed 330
- 19.2.2 Techniques for Concrete Removal 335
- 19.2.3 Surface Preparation 336
- 19.3 Preparation of Reinforcement 336

## (1)

- 19.4 Application of Repair Material 337
- 19.4.1 Requirements 337
- 19.4.2 Repair Materials 338
- 19.4.3 Specifications and Tests 339
- 19.5 Additional Protection 340
- 19.6 Strengthening 341

## 20 Electrochemical Techniques 345

- 20.1 Development of the Techniques 346
- 20.1.1 Cathodic Protection 346
- 20.1.2 . Cathodic Prevention 347
- 20.1.3 Electrochemical Chloride Removal 348
- 20.1.4 Electrochemical Realkalization 349
- 20.2 Effects of the Circulation of Current 349
- 20.2.1 Beneficial Effects 349
- 20.2.2 Side Effects 350
- 20.2.3 How Various Techniques Work 352
- 20.3 Cathodic Protection and Cathodic Prevention 354
- 20.3.1 Cathodic Protection of Steel in Chloride-contaminated Concrete 354
  - 20.3.2 Cathodic Prevention 356
  - 20.3.4 Cathodic Protection in Carbonated Concrete 357
  - 20.3.5 Throwing Power 358
  - 20.3.6 The Anode System 359
  - 20.3.7 Practical Aspects 360
  - 20.4 Electrochemical Chloride Extraction and Realkalisation 363
  - 20.4.1 Electrochemical Chloride Extraction 364
  - 20.4.2 . Electrochemical Realkalisation 369
  - 20.4.3 Practical Aspects 373

Index 381

1