Y. Kuramoto

Chemical Oscillations, Waves, and Turbulence

With 41 Figures

Springer-Verlag Berlin Heidelberg New York Tokyo 1984

Contents

1.	Introduction						1
----	--------------	--	--	--	--	--	---

Part I Methods

2.	Reductive Perturbation Method	5
	2.1 Oscillators Versus Fields of Oscillators	5
	2.2 The Stuart-Landau Equation	8
	2.3 Onset of Oscillations in Distributed Systems	13
	2.4 The Ginzburg-Landau Equation	17
3.	Method of Phase Description I	22
	3.1 Systems of Weakly Coupled Oscillators	22
	3.2 One-Oscillator Problem	24
	3.3 Nonlinear Phase Diffusion Equation	28
	3.4 Representation by the Floquet Eigenvectors	29
	3.5 Case of the Ginzburg-Landau Equation	32
4.	Method of Phase Description II	35
	4.1 Systematic Perturbation Expansion	35
	4.2 Generalization of the Nonlinear Phase Diffusion Equation	41
	4.3 Dynamics of Slowly Varying Wavefronts	46
	4.4 Dynamics of Slowly Phase-Modulated Periodic Waves	54
	·	

Part II Applications

5.	futual Entrainment	60
	.1 Synchronization as a Mode of Self-Organization	60
	.2 Phase Description of Entrainment	62
	5.2.1 One Oscillator Subject to Periodic Force	62
	5.2.2 A Pair of Oscillators with Different Frequencies	65
	5.2.3 Many Oscillators with Frequency Distribution	66
	.3 Calculation of Γ for a Simple Model	67
	4 Soluble Many-Oscillator Model Showing Synchronization-	
	Desynchronization Transitions	68

	5.5 Oscillators Subject to Fluctuating Forces		78
	5.5.1 One Oscillator Subject to Stochastic Forces		78
	5.5.2 A Pair of Oscillators Subject to Stochastic Forces		80
	5.5.3 Many Oscillators Which are Statistically Identical		82
	5.6 Statistical Model Showing Synchronization-Desynchron	nization	
	Transitions		82
	5.7 Bifurcation of Collective Oscillations		84
6.	. Chemical Waves		89
	6.1 Synchronization in Distributed Systems		89
	6.2 Some Properties of the Nonlinear Phase Diffusion Equa	tion	91
	6.3 Development of a Single Target Pattern		93
	6.4 Development of Multiple Target Patterns		101
	6.5 Phase Singularity and Breakdown of the Phase Descript	ion	103
	6.6 Rotating Wave Solution of the Ginzburg-Landau Equation	ion	106
7.	. Chemical Turbulence		111
	7.1 Universal Diffusion-Induced Turbulence		111
	7.2 Phase Turbulence Equation		114
	7.3 Wavefront Instability		120
	7.4 Phase Turbulence		127
	7.5 Amplitude Turbulence		132
	7.6 Turbulence Caused by Phase Singularities		137
A	Appendix		141
	A. Plane Wave Solutions of the Ginzburg-Landau Equation		141
	B. The Hopf Bifurcation for the Brusselator		144
R	References		149
Sı	ubject Index		155