A treatment in book form of the material in the lecture course delivered to the 'Mathematical Biofluidodynamics' Research Conference of the National Science Foundation held from July 16–20, 1973 at Rensselaer Polytechnic Institute, Troy, New York.
Contents

Acknowledgements ... xi

Chapter 1
INTRODUCTION TO BIOFLUIDDYNAMICS
 1. General description .. 1
 2. External biofluiddynamics ... 3
 3. Internal biofluiddynamics ... 5

PART I. EXTERNAL BIOFLUIDDYNAMICS

Chapter 2
HYDROMECHANICS OF AQUATIC ANIMAL PROPULSION: A SURVEY
 1. Scope of the survey .. 11
 2. Aquatic propulsion in twelve classes of invertebrates 12
 3. Introduction to fish propulsion 15
 4. Anguilliform propulsion .. 19
 5. Introduction to the carangiform mode 22
 6. Measurements of the carangiform mode 25
 7. The carangiform mode with lunate tail 26
 8. Two-dimensional analysis of the lunate tail 29
 9. Need for more detailed study of fast percomorph fishes 32
 10. Fishes with weight unbalanced by buoyancy 34
 11. Propulsion in 'armoured' fishes 37
 12. Limbs in swimming: amphibians and arthropods 38
 13. Aquatic propulsion in reptiles 39
 14. Aquatic propulsion in mammals 41
 15. Conclusion .. 42

Chapter 3
MATHEMATICS OF AQUATIC ANIMAL LOCOMOTION AT LOW REYNOLDS NUMBER
 1. Introduction ... 45
 2. The fluid equations and their fundamental singular solutions 45
 3. Line distributions of singular solutions 49
 4. Resistive-force theory of flagellar propulsion 53
 5. Swimming motions with minimum rate of working 59
 6. A more accurate slender-body theory 62
CONTENTS

Chapter 4
AQUATIC ANIMAL PROPULSION OF HIGH HYDROMECHANICAL EFFICIENCY
 1. Introduction ... 67
 2. The pure anguilliform mode of propulsion 72
 3. Vortex sheets shed by fins 79
 4. Mechanics of the carangiform mode 85
 5. Two-dimensional theory of the lunate tail 92

Chapter 5
LARGE-AMPLITUDE ELONGATED-BODY THEORY OF FISH LOCOMOTION
 1. Introduction ... 103
 2. Calculation of the reactive force 106
 3. Discussion of the thrust-drag balance in relation to observations .. 111

Chapter 6
AQUATIC ANIMAL LOCOMOTION: A SURVEY OF RECENT THEORETICAL DEVELOPMENTS
 1. Introduction ... 117
 2. The subdivisions of hydrodynamic theory relevant to aquatic animal locomotion 119
 3. Hydrodynamics of ciliary propulsion 126
 4. Large-amplitude elongated-body theory 132
 5. Vortex wakes ... 137

Chapter 7
SOME CURRENT INVESTIGATIONS OF AQUATIC ANIMAL MOTIONS
 1. Developments at low Reynolds numbers 141
 2. Developments at high Reynolds numbers 144

Chapter 8
ANIMAL FLIGHT
 1. The conquest of the air ... 151
 2. Sustained forward flight of an insect 155
 3. Bird forward flight ... 159
 4. Hovering flight .. 169

Chapter 9
ON THE WEIS-FOGH MECHANISM OF LIFT GENERATION
 1. Introduction ... 179
 2. Two-dimensional inviscid-flow theory 181
 3. Modifications due to viscous effects 186
 4. Conclusion ... 190
PART II. INTERNAL BIOFLUIDDYNAMICS

Chapter 10
PHYSIOLOGICAL FLUID DYNAMICS: A GENERAL SURVEY
1. Introduction .. 199
2. Steady secondary flows 201
3. Entry regions ... 202
4. Incipient atheroma .. 203
5. Distribution of shear in branched systems 203
6. Distribution of resistance in branched systems 204
7. Bronchial resistance .. 205
8. Velocity distributions in pulsatile flow 206
9. Pulse propagation .. 206
10. Turbulence in the blood stream 207
11. Urinary tract ... 208

Chapter 11
RESPIRATORY FLOW PATTERNS
1. Introduction ... 211
2. Flow patterns in human bronchi 214
3. Lung flow patterns in birds 217

Chapter 12
PULSE PROPAGATION THEORY
1. Introduction ... 227
2. Wall stress systems associated with pulse propagation 229
3. Propagation through a junction 232
4. Interaction between junctions in a branching system 237
5. Amplitude gradations along a single tube 241
6. Some comparisons with experiment 246

Chapter 13
BLOOD FLOW AND ARTERIAL DISEASE
1. Observations of turbulence in blood flow 253
2. Poststenotic dilatation 255
3. Aneurysms in the cranial circulation 256
4. Atherogenesis by intercellular lipid deposition 259
5. Intracellular lipid accumulation 262

Chapter 14
THE MICROCIRCULATION
1. Introduction ... 269
2. Vasomotor control of peripheral perfusion 270
3. Pulmonary perfusion and ventilation 272
4. Axial concentration 274
5. Lubrication problems in very narrow capillaries 276