STUDIES IN SOVIET SCIENCE

THEORETICAL FOUNDATIONS OF NONLINEAR ACOUSTICS

O.V. Rudenko and S.I. Soluyan
Moscow State University
Moscow, USSR

Translated from Russian by
Robert T. Beyer
Brown University
Providence, Rhode Island

CONSULTANTS BUREAU • NEW YORK AND LONDON

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1. Linear Acoustics. Equations and Limits of Applicability</td>
<td>5</td>
</tr>
<tr>
<td>2. Information from Shock Wave Theory</td>
<td>11</td>
</tr>
<tr>
<td>1. Plane Waves of Finite Amplitude in Media without Dispersion</td>
<td>15</td>
</tr>
<tr>
<td>1. Spectral Approach to Nonlinear Waves</td>
<td>15</td>
</tr>
<tr>
<td>2. Simple Waves in Nonlinear Acoustics</td>
<td>17</td>
</tr>
<tr>
<td>3. Graphical Analysis of the Deformation of the Profile of a Simple Wave</td>
<td>22</td>
</tr>
<tr>
<td>4. Formation of Discontinuities in a Simple Wave</td>
<td>26</td>
</tr>
<tr>
<td>5. Propagation of Riemann Waves (within the Framework of the Second Approximation)</td>
<td>29</td>
</tr>
<tr>
<td>2. Plane Waves of Finite Amplitude in Media without Dispersion (Elastic Heat-Conducting Medium)</td>
<td>39</td>
</tr>
<tr>
<td>1. Derivation of the Burgers Equation</td>
<td>39</td>
</tr>
<tr>
<td>2. Solution of the Burgers Equation for a Periodic Disturbance</td>
<td>42</td>
</tr>
<tr>
<td>3. Solution of the Burgers Equation for a Periodic Disturbance (Exact Solution)</td>
<td>47</td>
</tr>
<tr>
<td>4. Solution of the Burgers Equation for Nonperiodic Disturbances</td>
<td>54</td>
</tr>
<tr>
<td>3. Spherical and Cylindrical Waves of Finite Amplitude</td>
<td>63</td>
</tr>
<tr>
<td>1. Derivation of the Equations</td>
<td>63</td>
</tr>
<tr>
<td>2. Medium without Dispersion</td>
<td>65</td>
</tr>
</tbody>
</table>
3. Dissipative Medium. Quasi-Stationary Solutions 68
4. Structure of a Cylindrical Shock Wave. The Self-Similar Approach 70
5. General Structure of Spatially Symmetric Waves with Account of Nonlinearity and Dissipation ... 73
6. Features of Propagation of Converging and Diverging Waves 75

4. Sound Waves in Dispersive Media 79
 1. The Dispersive Properties of a Medium, A Medium with Relaxations 79
 2. Weak and Strong Dispersion .. 85
 3. Propagation of Finite Disturbances in a Relaxing Medium 88

5. Interaction of Sound Waves 97
 1. Collinear Interaction of Plane Waves 97
 2. Scattering of Sound by Sound 107
 3. Standing Waves of Finite Amplitude 120
 4. On the Interaction of Sound with Waves of Another Form 130

6. Parametric Phenomena in Sound Waves 137
 1. Three-Particle Parametric Interactions 137
 2. Parametric Sound Amplification in Media without Dispersion 145
 3. Parametric Amplification of Sound in Artificial Systems with Dispersion 158

 2. Calculation of Waves Reflected from Discontinuities 170
 3. The Constant Component as a Consequence of the Nonlinear Self-Action of Waves 175
CONTENTS

8. Acoustic Streaming .. 187
 1. Derivation of the System of Equations for Acoustic Streaming 187
 2. Eckart Streaming ... 191
 3. Multidimensional Streaming 197
 4. Other Types of Streaming 206
 5. Laws of Similarity and Classification of Acoustic Streaming 210

9. Propagation of Bounded Sound Beams 213
 1. Equation of the Nonlinear Acoustics of Bounded Beams 213
 2. The Parabolic Equation. Some Problems of Linear Diffraction Theory 216
 3. Nonlinear Effects in Sound Beams 220
 4. Approximate Solutions for Large and Small N Numbers 223
 5. Nonlinear Geometric Acoustics. Distortion of Unipolar Disturbances 228

10. Statistical Phenomena in Nonlinear Acoustics 239
 1. Randomly Modulated Sound Waves 239
 3. Interaction of Modulated Waves 254
 4. Quasi-Harmonic Signals in the Presence of Phase Fluctuations Only 257
 5. The Interaction of Regular Waves with Random Waves 259

References ... 269