Lecture Notes in Economics and Mathematical Systems

Managing Editors: M. Beckmann and W. Krelle

269

Anders Borglin Hans Keiding

Optimality in Infinite Horizon Economies

Fachbereich Mathematik
Technische Hochschule Dermstadt
Bibliothek

Inv.-Nr. <u>B 20853</u>

Springer-Verlag Berlin Heidelberg New York Tokyo

TABLE OF CONTENTS

INTRODUCTION	Page
·	
PART I	
CHAPTER 1: ONE-GOOD PRODUCTION AND	
CONSUMPTION MODELS	7
1.1 THE ONE-GOOD PRODUCTION MODEL	8
1.1.1 Price Supported Programs	. 9
1.1.2 Steady States and Efficiency	11
1.1.3 Improving Sequences	13
1.1.4 Efficiency Criteria	16
1.2 THE SAMUELSON CONSUMPTION MODEL	19
1.2.1 The Overlapping Generations Model	20
1.2.2 Equilibrium Programs	21
1.2.3 Weak Optimality and Optimality	. 22
1.2.4 Improving Sequences	23
1.2.5 Optimality Criteria	24
1.2.6 An Interpretation	25
1.2.7 Two Examples	26
CHAPTER 2: REDUCED MODELS	30
2.1 DEFINITIONS	. 31
2.2 REDUCTION OF THE PRODUCTION MODEL	33
2.3 REDUCTION OF THE CONSUMPTION MODEL	35

		Page
2.4	A DOUBLE INFINITY MODEL OF PRODUCTION	39
2.5	VARIATIONS OVER THE THEME:	
	DISCOUNTED UTILITY MAXIMIZATION	41
2.6*	FURTHER APPLICATIONS OF REDUCED MODELS:	
	THE PURE BIRTH PROCESS	45
CHAI	PTER 3: EFFICIENCY CRITERIA	48
3.1	REDUCED MODELS AND THE COMPOSITION OF RELATIONS	48
3.2		50
-	THE GENERAL EFFICIENCY CRITERION	56
	PARAMETRIC EFFICIENCY CRITERIA	58
3 5 *	EFFICIENCY CRITERIA IN RELATED MODELS	6 1
CHA	PTER 4: MEASURES OF CURVATURE AND	
	GENERAL EFFICIENCY CRITERIA	65
4.1	REDUCED MODELS WITH ARBITRARY SUPPORT	65
4.2	EFFICIENCY CRITERIA BY APPROXIMATION AND	
*	MEASURES OF CURVATURE	68
4.3	LOCAL APPROXIMATIONS	7 1
4.4		73
	4.4.1 Parabolic Measures of Curvature	74
	4.4.2 Benveniste's Measure of Curvature	77
	4.4.3 Mitra's Condition S	78
4.5	MEASURES OF CURVATURE IN THE CONSUMPTION MODEL	. 79
4.6		81
4.7*	DIVERGENT BIRTH PROCESSES	83
	,	
CHAI	PTER 5: APPROXIMATING SETS AND	
	MEASURES OF CURVATURE	86
5.1	AXIOMS FOR AN APPROXIMATING FAMILY	87
5.2	DISCUSSION OF THE AXIOMS	88
5.3	THE APPROXIMATING FAMILY DETERMINED BY THE AXIOMS	89
5.4	A FURTHER PROPERTY OF THE FAMILY Ω^{O}	92

PART II

CHAI	PTER 6: MARKET STRUCTURES AND OVERLAPPING	Page
	MARKET ECONOMIES	96
6.1	MARKET STRUCTURES	97
6.2	COUNTABILITY PROPERTIES AND	
	THE CANONICAL MARKET STRUCTURE	102
6.3	ECONOMIES OVER MARKET STRUCTURES	103
6.4	EXAMPLES	108
6.5	MAPS AND MORPHISMS BETWEEN ECONOMIES OVER	
	MARKET STRUCTURES	110
CHAI	PTER 7: REDUCED MANY-GOODS MODELS	116
	REDUCED MODELS AND EFFICIENCY	117
7.2*	INVARIANCE PROPERTIES OF REDUCED MODELS	120
7.3	THE REDUCED MODEL ASSOCIATED WITH	-
	AN ECONOMY AND AN ALLOCATION	123
7.4	PARETO OPTIMALITY AND EFFICIENCY OF THE REDUCED MODEL	126
7.5	THE EXISTENCE OF SUPPORTS	130
CHAI	PTER 8: EFFICIENCY CRITERIA FOR MANY-GOODS MODELS	138
8.1	THE PARETO IMPROVEMENTS IN A REDUCED MODEL	139
8.2	THE COMPOSITION OF SETS	141
8.3	A GENERAL EFFICIENCY CRITERION	142
8.4*	CLOSED AND PSEUDO-CLOSED REDUCED MODELS	147
	8.4.1 A Sufficient Condition for Closedness	148
	8.4.2 Applications to Generation	
	Models and Two Examples	151

CHAPTER 9: APPROXII	MATIONS OF MANY-GOODS MODELS	Page 157
9.1 EXAMPLES OF MO	RPHISMS	158
9.2 AXIOMS FOR AN	APPROXIMATING FAMILY	159
9.3 APPLICATIONS O	F THE MEASURE OF CURVATURE	164
9.4 VALUE MODELS		167
REFERENCES	,	170
INDEX		177

ACKNOWLEDGEMENT

Bodil Olai Hansen has read part of the manuscript and thereby saved us from some mistakes and misprints. We want to use this opportunity to thank her as well as Erling Petersson, who has helped us conquer the mysteries of the word processor, and Agnetta Kretz, who has drawn the diagrams.

The Swedish Social Science Foundation and the Royal Swedish Academy of Science has provided financial support for Anders Borglin.