THEORY AND EXPERIMENT IN GRAVITATIONAL PHYSICS

CLIFFORD M. WILL
McDonnell Center for the Space Sciences, Department of Physics
Washington University, St Louis

Revised Edition
Contents

Preface to Revised Edition
Preface to First Edition

1. Introduction
2. The Einstein Equivalence Principle and the Foundations of Gravitation Theory
 2.1 The Dicke Framework
 2.2 Basic Criteria for the Viability of a Gravitation Theory
 2.3 The Einstein Equivalence Principle
 2.4 Experimental Tests of the Einstein Equivalence Principle
 2.5 Schiff's Conjecture
 2.6 The \(T\H_\mu \) Formalism
3. Gravitation as a Geometric Phenomenon
 3.1 Universal Coupling
 3.2 Nongravitational Physics in Curved Spacetime
 3.3 Long-Range Gravitational Fields and the Strong Equivalence Principle
4. The Parametrized Post-Newtonian Formalism
 4.1 The Post-Newtonian Limit
 4.2 The Standard Post-Newtonian Gauge
 4.3 Lorentz Transformations and the PPN Metric
 4.4 Conservation Laws in the PPN Formalism
5. Post-Newtonian Limits of Alternative Metric Theories of Gravity
 5.1 Method of Calculation
 5.2 General Relativity
 5.3 Scalar–Tensor Theories
 5.4 Vector–Tensor Theories
 5.5 Bimetric Theories with Prior Geometry
 5.6 Stratified Theories
 5.7 Nonviable Theories

Preface to Revised Edition
Preface to First Edition

1. Introduction
2. The Einstein Equivalence Principle and the Foundations of Gravitation Theory
 2.1 The Dicke Framework
 2.2 Basic Criteria for the Viability of a Gravitation Theory
 2.3 The Einstein Equivalence Principle
 2.4 Experimental Tests of the Einstein Equivalence Principle
 2.5 Schiff's Conjecture
 2.6 The \(T\H_\mu \) Formalism
3. Gravitation as a Geometric Phenomenon
 3.1 Universal Coupling
 3.2 Nongravitational Physics in Curved Spacetime
 3.3 Long-Range Gravitational Fields and the Strong Equivalence Principle
4. The Parametrized Post-Newtonian Formalism
 4.1 The Post-Newtonian Limit
 4.2 The Standard Post-Newtonian Gauge
 4.3 Lorentz Transformations and the PPN Metric
 4.4 Conservation Laws in the PPN Formalism
5. Post-Newtonian Limits of Alternative Metric Theories of Gravity
 5.1 Method of Calculation
 5.2 General Relativity
 5.3 Scalar–Tensor Theories
 5.4 Vector–Tensor Theories
 5.5 Bimetric Theories with Prior Geometry
 5.6 Stratified Theories
 5.7 Nonviable Theories

Preface to Revised Edition

Preface to Revised Edition
Preface to First Edition

1. Introduction
2. The Einstein Equivalence Principle and the Foundations of Gravitation Theory
 2.1 The Dicke Framework
 2.2 Basic Criteria for the Viability of a Gravitation Theory
 2.3 The Einstein Equivalence Principle
 2.4 Experimental Tests of the Einstein Equivalence Principle
 2.5 Schiff's Conjecture
 2.6 The \(T\H_\mu \) Formalism
3. Gravitation as a Geometric Phenomenon
 3.1 Universal Coupling
 3.2 Nongravitational Physics in Curved Spacetime
 3.3 Long-Range Gravitational Fields and the Strong Equivalence Principle
4. The Parametrized Post-Newtonian Formalism
 4.1 The Post-Newtonian Limit
 4.2 The Standard Post-Newtonian Gauge
 4.3 Lorentz Transformations and the PPN Metric
 4.4 Conservation Laws in the PPN Formalism
5. Post-Newtonian Limits of Alternative Metric Theories of Gravity
 5.1 Method of Calculation
 5.2 General Relativity
 5.3 Scalar–Tensor Theories
 5.4 Vector–Tensor Theories
 5.5 Bimetric Theories with Prior Geometry
 5.6 Stratified Theories
 5.7 Nonviable Theories
Contents

6 Equations of Motion in the PPN Formalism 142
 6.1 Equations of Motion for Photons 143
 6.2 Equations of Motion for Massive Bodies 144
 6.3 The Locally Measured Gravitational Constant 153
 6.4 N-Body Lagrangians, Energy Conservation, and the Strong
 Equivalence Principle 158
 6.5 Equations of Motion for Spinning Bodies 163
7 The Classical Tests 166
 7.1 The Deflection of Light 167
 7.2 The Time-Delay of Light 173
 7.3 The Perihelion Shift of Mercury 176
8 Tests of the Strong Equivalence Principle 184
 8.1 The Nordtvedt Effect and the Lunar Eötvös Experiment 185
 8.2 Preferred-Frame and Preferred-Location Effects:
 Geophysical Tests 190
 8.3 Preferred-Frame and Preferred-Location Effects: Orbital Tests 200
 8.4 Constancy of the Newtonian Gravitational Constant 202
 8.5 Experimental Limits on the PPN Parameters 204
9 Other Tests of Post-Newtonian Gravity 207
 9.1 The Gyroscope Experiment 208
 9.2 Laboratory Tests of Post-Newtonian Gravity 213
 9.3 Tests of Post-Newtonian Conservation Laws 215
10 Gravitational Radiation as a Tool for Testing Relativistic Gravity 221
 10.1 Speed of Gravitational Waves 223
 10.2 Polarization of Gravitational Waves 227
 10.3 Multipole Generation of Gravitational Waves and Gravitational
 Radiation Damping 238
11 Structure and Motion of Compact Objects in
 Alternative Theories of Gravity 255
 11.1 Structure of Neutron Stars 257
 11.2 Structure and Existence of Black Holes 264
 11.3 The Motion of Compact Objects: A Modified EIH Formalism 266
12 The Binary Pulsar 283
 12.1 Arrival-Time Analysis for the Binary Pulsar 287
 12.2 The Binary Pulsar According to General Relativity 303
 12.3 The Binary Pulsar in Other Theories of Gravity 306
13 Cosmological Tests 310
 13.1 Cosmological Models in Alternative Theories of Gravity 312
 13.2 Cosmological Tests of Alternative Theories 316
Contents

14 An Update

14.1 The Einstein Equivalence Principle

14.2 The PPN Framework and Alternative Metric Theories of Gravity

14.3 Tests of Post-Newtonian Gravity

14.4 Experimental Gravitation: Is there a Future?

14.5 The Rise and Fall of the Fifth Force

14.6 Stellar-System Tests of Gravitational Theory

14.7 Conclusions

References

References to Chapter 14

Index