TIME SERIES ANALYSIS forecasting and control

Revised Edition

GEORGE E. P. BOX

University of Wisconsin, U.S.A.

and

GWILYM M. JENKINS

 ${\it University~of~Lancaster,~U.K.}$

HOLDEN-DAY

Oakland, California

Techr f					nsci H II				di A
-	-	_		_	0		 Ε	K	
Invent	ar-	Nr.	:	Z	58	8	 		*
Sachg	ebi	ieta	١				 		
Stand	ori	•					 		

Contents

PREFACE		VII
Снартев	I INTRODUCTION AND SUMMARY	
1.1 Th	ree important practical problems	1
1.1.1		
1.1.2	Estimation of transfer functions	
1.1.3	Design of discrete control systems	4
1.2 Sto	chastic and deterministic dynamic mathematical models .	
1.2.1	Stationary and nonstationary stochastic models for fore-	
	casting and control	7
1.2.2	Transfer function models	
1.2.3	Models for discrete control systems	16
1.3 Bas	sic ideas in model building	17
1.3.1	Parsimony	17
1.3.2	Iterative stages in the selection of a model	18
PART I	STOCHASTIC MODELS AND THEIR FORECASTING	
CHAPTER	2 THE AUTOCORRELATION FUNCTION AND SPECTRUM	÷
2.1 Au	tocorrelation properties of stationary models	23
2.1.1	Time series and stochastic processes	23
2.1.2	Stationary stochastic processes	26
2.1.3	Positive definiteness and the autocovariance matrix	28
2.1.4	The autocovariance and autocorrelation functions	30
2.1.5	Estimation of autocovariance and autocorrelation functions	32
2.1.6	Standard errors of autocorrelation estimates	34

xiv Contents

2.2 Sp	ectral properties of stationary models
2.2.1	
2.2.2	
2.2.3	The spectrum and spectral density function
2.2.4	
	functions
2.2.5	
	spectral density functions
A2.1	Link between the sample spectrum and autocovariance
	function estimate
CHAPT	ER 3 LINEAR STATIONARY MODELS
3.1 Th	e general linear process
3.1.1	•
3.1.2	•
3.1.3	Stationarity and invertibility conditions for a linear process
3.1.4	
	toregressive processes
3.2.1	* · · ·
3.2.2	
0	processes
3.2.3	The first order autoregressive (Markov) process
3.2.4	The second order autoregressive process
3.2.5	The partial autocorrelation function
3.2.6	Estimation of the partial autocorrelation function
3.2.7	Standard errors of partial autocorrelation estimates
	oving average processes
3.3.1	Invertibility conditions for moving average processes
3.3.2	Autocorrelation function and spectrum of moving average
3.3.2	processes
3.3.3	The first-order moving average process
3.3.4	
3.3.5	Duality between autoregressive and moving average pro-
3.3.3	
2.4 M	cesses
	xed autoregressive—moving average processes
3.4.1	J P P
3.4.2	
3.4.3	The first-order autoregressive—first order moving average
2.4.4	process
3.4.4	
A3.1	Autocovariances, autocovariance generating functions and
	stationarity conditions for a general linear process

Contents xv

A3.2 A re	ccursive method for calculating autoregressive parars
Chapter 4 I	LINEAR NONSTATIONARY MODELS
4.1 Autoregr	ressive integrated moving average processes
	nonstationary first order autoregressive process
	eneral model for a nonstationary process exhibiting
•	ogeneity
4.1.3 The	general form of the autoregressive integrated moving
4.2 Three ex	age process
avera	age model
4.2.1 Diffe	age model
4.2.2 Rand	dom shock form of the model
	rted form of the model
4.3 Integrate	d moving average processes
	integrated moving average process of order (0, 1, 1).
	integrated moving average process of order (0, 2, 2)
	general integrated moving average process of order
A4.1 Linear	difference equations
A4.2 The IM	fA (0, 1, 1) process with deterministic drift
A4.3 Proper	ties of the finite summation operator
A4.4 ARIM	A processes with added noise
	e sum of two independent moving average processes.
	ect of added noise on the general model
	ample for an IMA (0, 1, 1) process with added white
A4.4.4 Re	ise
wa	lk
A4.4.5 Au	tocovariance function of the general model with added
	rrelated noise
CHAPTER 5	FORECASTING
5.1 Minimur	m mean square error forecasts and their properties .
	vation of the minimum mean square error forecasts
	ee basic forms for the forecast
5.2 Calculati	ing and updating forecasts
5.2.1 A co	onvenient format for the forecasts
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	of the ψ weights in updating the forecasts
	ulation of the probability limits of the forecasts at any
	time

xvi Contents

5.3 Th	e forecast function and forecast weights
5.3.1	The eventual forecast function determined by the auto-
	regressive operator
5.3.2	Role of the moving average operator in fixing the initial
	values
5.3.3	values
5.4 Ex	amples of forecast functions and their updating
5.4.1	Forecasting an IMA (0, 1, 1) process
5.4.2	Forecasting an IMA (0, 2, 2) process
5.4.3	Forecasting a general IMA $(0, d, q)$ process
5.4.4	
5.4.5	
5.4.6	
5.5 Su	mmary
	Correlations between forecast errors
	1 Autocorrelation function of forecast errors at different
	origins
A5.1.	
	with different lead times
A5.2 F	with different lead times
	Forecasting in terms of the general integrated form
A5.3.	
	2 Updating the general integrated form
A5.3.	
	of R. G. Brown
PART II	STOCHASTIC MODEL BUILDING
	·
	R 6 MODEL IDENTIFICATION
5.1 Ob	jectives of identification
6.1.1	Stages in the identification procedure
5.2 Ide	entification techniques
6.2.1	
	functions in identification
6.2.2	Standard errors for estimated autocorrelations and partial
	autocorrelations
6.2.3	Identification of some actual time series
	tial estimates for the parameters
6.3.1	
0,011	function
632	Initial estimates for moving average processes
0.0.4	
6.3.3	

Contents xvii

6.3.4	Initial estimates for mixed autoregressive-moving average
	processes
6.3.5	Choice between stationary and nonstationary models in doubtful cases
6.3.6	Initial estimate of residual variance
6.3.7	An approximate of residual variance
	• • • • • • • • • • • • • • • • • • • •
	odel multiplicity
6.4.1 6.4.2	Multiplicity of autoregressive-moving average models
	Multiple moment solutions for moving average parameters.
6.4.3	Use of the backward process to determine starting values.
	xpected behaviour of the estimated autocorrelation function
10	or a nonstationary process
	general method for obtaining initial estimates of the para-
	neters of a mixed autoregressive-moving average process .
A 6.3 T	The forward and backward IMA processes of order (0, 1, 1).
Снартег	7 MODEL ESTIMATION
	dy of the likelihood and sum of squares functions
7.1.3tu 7.1.1	
7.1.2	The conditional likelihood for an ARIMA process
7.1.3	Choice of starting values for conditional calculation
7.1.4	The unconditional likelihood—the sum of squares function
	—least squares estimates
7.1.5	General procedure for calculating the unconditional sum
	of squares
7.1.6	Graphical study of the sum of squares function
7.1.7	Description of "well-behaved" estimation situations—
	confidence regions
7.2 No	onlinear estimation
7.2.1	General method of approach
7.2.2	Numerical estimates of the derivatives
7.2.3	Direct evaluation of the derivatives
7.2.4	A general least squares algorithm for the conditional model
7.2.5	Summary of models fitted to Series A–F
7.2.6	Large sample information matrices and covariance estim-
	ates
7.3 So	me estimation results for specific models
7.3.1	Autoregressive processes
7.3.1	Moving average processes
7.3.2	Mixed processes
7.3.4	Separation of linear and nonlinear components in estim-
	ation

xviii Contents

7.3.3	Parameter redundancy	24
7.4 Es	stimation using Bayes' theorem	25
7.4.1	stimation using Bayes' theorem Bayes' theorem	25
7.4.2	Bayesian estimation of parameters	25
7.4.3		25.
7.4.4	Moving average processes	25.
7.4.5	Mixed processes	25
A7.1 I	Review of normal distribution theory	25
A7.2		26.
A7.3 I	Examples of the effect of parameter estimation errors on	
ŗ		26
A7.4		26
A7.5		27
		28
	p	
Снартев	8 8 MODEL DIAGNOSTIC CHECKING	
81 Ch	ecking the stochastic model	285
8.1.1		285
		286
8.2 Dia		287
821	Autocorrelation check	289
8.2.2	A portmanteau lack of fit test	290
		293
		294 294
83 He	e of residuals to modify the model	298
8.3.1	Nature of the correlations in the residuals when an incorrect	.,(
		298
832		299
0.5.2	Ose of residuals to modify the model	.,,
O	, O CEACONAL MODELS	
	R 9 SEASONAL MODELS	
9.1 Par		300
9.1.1		30
9.1.2	U 1	30
9.1.3		303
	presentation of the airline data by a multiplicative $(0, 1, 1) \times$	
		30:
9.2.1		30:
9.2.2	e e e e e e e e e e e e e e e e e e e	300
9.2.3	Identification	31.
9.2.4	Estimation	31:
9.2.5		320
	me aspects of more general seasonal models	322
931	Multiplicative and nonmultiplicative models	32

Contents xix

9.3.2	Identification
9.3.3	Estimation
9.3.4	Eventual forecast functions for various seasonal models .
9.3.5	
A9.1 A	utocovariances for some seasonal models
Part III	TRANSFER FUNCTION MODEL BUILDING
Chapter	10 TRANSFER FUNCTION MODELS
10.1 Li1	near transfer function models
10.1.1	
10.1.2	1
	equations,
	screte dynamic models represented by difference equations
10.2.1	The general form of the difference equation
10.2.2	Nature of the transfer function
	First and second order discrete transfer function models.
10.2.4	1
	lation between discrete and continuous models
10.3.1	Response to a pulsed input
10.3.2	1
10 2 2	systems
10.3.3	11 5 6
10.2.4	models
10.3.4	
	Continuous models with pulsed inputs
A10.2	Nonlinear transfer functions and linearization
CHAPTER	11 IDENTIFICATION, FITTING, AND CHECKING
	OF TRANSFER FUNCTION MODELS
11.1 Th	ne cross correlation function
11.1.1	Properties of the cross covariance and cross correlation
	functions
11.1.2	
	functions
11.1.3	Approximate standard errors of cross correlation estimates
11.2 Ide	entification of transfer function models
11.2.1	Identification of transfer function models by prewhitening
	the input
11.2.2	An example of the identification of a transfer function
	model
11.2.3	
11.2.4	Some general considerations in identifying transfer
	function models

xx Contents

11.3 Fit	ting and checking transfer function models
	Nonlinear estimation
	Use of residuals for diagnostic checking
11.3.4	
	me examples of fitting and checking transfer function
	dels
11.4.1	
11.4.2	
11.5 Fo	recasting using leading indicators
11.5.1	The minimum square error forecast
11.5.2	Forecast of CO ₂ output from gas furnace
	Forecast of nonstationary sales data using a leading
(1.5.5	indicator
11.6 So	me aspects of the design of experiments to estimate transfer
	actions
	Jse of cross spectral analysis for transfer function model
	dentification
A11.1.	
A11.1.	• .
	Choice of input to provide optimal parameter estimates .
	1 Design of optimal input for a simple system
	2 A numerical example
A11.2.	2 A numerical example
Danz IV	DESIGN OF DISCRETE CONTROL SCHEMES
FARI IV	DESIGN OF DISCRETE CONTROL SCHEMES
	,
CHAPTER	12 DESIGN OF FEEDFORWARD AND FEEDBACK
	CONTROL SCHEMES
13.1 E.	. 1C
	edforward control
12.1.1	
	the output
12.1.2	An example—control of specific gravity of an intermediate
	product
12.1.3	A nomogram for feedforward control
12.1.4	Feedforward control with multiple inputs
	edback control
12.2.1	Feedback control to minimize output mean square error.
12.2.2	Application of the control equation: relation with three-
	term controller
12.2.3	Examples of discrete feedback control

Contents xxi

12.3 Feedforward-feedback control
12.3.1 Feedforward-feedback control to minimize output mean
square error
12.3.2 An example of feedforward-feedback control 4
12.3.3 Advantages and disadvantages of feedforward and feed-back control
12.4 Fitting transfer function-noise models using operating data . 4
12.4.1 Iterative model building
12.4.2 Estimation from operating data
12.4.4 Model fitting under feedback conditions
CHAPTER 13 SOME FURTHER PROBLEMS IN CONTROL
13.1 Effect of added noise in feedback schemes
13.1.1 Effect of ignoring added noise—rounded schemes 4
13.1.2 Optimal action when there are observational errors in the
adjustments x_t 4
13.1.3 Transference of the noise origin
13.2 Feedback control schemes where the adjustment variance is
restricted
13.2.2 A constrained scheme for the viscosity/gas rate example . 4
13.3 Choice of the sampling interval
13.3.1 An illustration of the effect of reducing sampling frequency
13.3.2 Sampling an IMA (0, 1, 1) process
15.5.2 Sampling all 1141/1 (0, 1, 1) process
PART V
Description of computer programs
Collection of tables and charts
Collection of time series used for examples in the text
References
Index
PART VI
Exercises and Problems