Finite Strip Analysis of Bridges

M.S. Cheung

Director, Ottawa–Carleton Bridge Research Institute and Adjunct Professor, Department of Civil Engineering, University of Ottawa, Ottawa, Canada

W. Li

Post-Doctoral Fellow, Department of Civil Engineering, University of Ottawa, Ottawa, Canada,

and

S.E. Chidiac

Research Officer, Structures Laboratory, Institute for Research in Construction, National Research Council Canada, Ottawa, Canada

London · Weinheim · New York · Tokyo · Melbourne · Madras

Contents

Pr	eface		xi		
	ciaci		Л		
Notation					
Pa	Part I Mathematical Approach		1		
1	Intr	oduction	3		
	1.1	Bridge analysis by refined methods	3		
	1.2	Development of the finite strip method	5		
	1.3	Reading suggestions	7		
2	Basic concepts of numerical methods				
	2.1	Introduction	9		
	2.2	Problem formulation	10		
	2.3	Direct approach	13		
	2.4	Variational method	15		
	2.5	Weighted residual method	27		
	2.6	Finite element method	31		
	2.7	Convergence requirements for interpolation functions	32		
	2.8	Generalized procedure for a finite element solution	33		
	2.9	Finite strip method	36		
3	Numerical errors		37		
	3.1	Introduction	37		
	3.2	Definition of computational errors	38		
	3.3	Assessing computational errors	39		
	3.4	Assessing discretization errors	41		
	3.5	Concluding remarks	49		
Pa	art II	Finite Strip Method	51		
4	Finite strip method		53		
	4.1	Introduction	53		
	4.2	Energy approach for a simple beam	54		

viii	i		Contents
	4.3	Plate strip	56
	4.4	-	69
	4.5	Flat shell strip	75
	4.6	Boundary conditions along nodal lines	78
	4.7	Continuous structures: flexibility approach	80
	4.8	Continuous structures: stiffness approach	81
	4.9	Numerical examples	84
5	Higher order finite strips		91
	5.1		91
	5.2	Plate strip HO2 with curvature continuity	91
	5.3	Plate strip HO3 with an internal nodal line	93
	5.4	1	97
	5.5	1	99
	5.6		99
	5.7	Numerical examples	99
6	\mathbf{Spl}	ine finite strip method	105
	6.1	Introduction	105
	6.2		107
	6.3	1 1 1	109
	6.4	Analysis of arbitrarily shaped plates	112
7	1 1		121
		Introduction	121
		Rectangular compound strip	122
	7.3	Rectangular B-spline compound strip	126
	7.4	Numerical examples	127
8	Finite layer method; finite prism method		133
	8.1		133
	8.2	Finite layer method	134
	8.3	Finite prism method	136
	8.4	· ·	141
	8.5	Numerical examples	142
9	Vibration and stability analyses		149
	9.1	Introduction	149
	9.2	Vibration finite strip analysis	149
	9.3	Mass matrix of a finite strip	150
	9.4	Mass matrix of a plate strip	151
	9.5	Mass matrix of a plane stress strip	152
	9.6	Mass matrix of a flat shell strip	152
	9.7	Bending and in-plane interaction	153

Contents			
9.8 Stability analysis of plates	155		
9.9 Stability analysis of thin-walled structures	155		
9.10 Numerical examples	157		
10 Nonlinear analysis	167		
10.1 Introduction	167		
10.2 Nonlinear solution procedure	167		
10.3 Elastoplastic analysis	171		
10.4 Analysis of reinforced concrete slabs	180		
10.5 Geometrically nonlinear analysis	190		
11 Combined analysis	203		
11.1 Introduction	203		
11.2 Combined FS/FE analysis of irregular plates	204		
11.3 Combined FS/BE analysis of irregular plates	209		
11.4 Combined BE/FS analysis of slab girder bridges	213		
Part III Finite Strip Analysis of Bridges	223		
	225		
12 Slab and slab-on-girder bridges			
12.1 Introduction	225		
12.2 Stiffness matrix of a longitudinal beam	226		
12.3 Deformation and settlement of support	228 228		
12.4 Numerical examples	220		
13 Curved and skewed bridges	241		
13.1 Introduction	241		
13.2 Circularly curved plate strip	241		
13.3 Curved compound strip	244		
13.4 Curved strip for box bridges	247		
13.5 Skewed plate strip	250		
13.6 Analysis of skewed box girder bridges	252		
13.7 Numerical examples	252		
14 Box girder bridges	263		
14.1 Introduction	263		
14.2 Elastic properties of constituent plates	264		
14.3 Intermediate supports and diaphragm	266		
14.5 Intermediate supports and diaphragm 14.4 Prestressing forces	200		
14.4 Trestressing forces 14.5 Local bending moment	270		
14.5 Local bending moment 14.6 Numerical examples	272		
14.0 Numericai examples	210		
15 Continuous haunched bridges	289		
15.1 Introduction	289		

x	Contents
15.2 Finite strip analysis	289
15.3 Spline finite strip analysis	296
15.4 Numerical examples	300
16 Cable-stayed bridges	307
16.1 Introduction	307
16.2 Girder substructure	308
16.3 Formulas for cables	309
16.4 Stiffness matrix for pylons	313
16.5 Initial-stiffness iteration	314
16.6 Numerical examples	315
17 Finite strip modeling of bridges	321
17.1 Introduction	321
17.2 Selecting approach and strip	321
17.3 Generating a finite strip model	322
17.4 Numbering nodal lines and strips	32 4
17.5 Input data file	324
17.6 Output file	326
References	329
Index	341