GAS TURBINE PROPULSION SYSTEMS

Bernie MacIsaac

Retired Founder and CEO, GasTOPS Ltd, Canada

9

Roy Langton

Retired Group VP Engineering, Parker Aerospace, USA

, A.

Contents

Abou	it the Aut	hors	x
Prefa	ice		xii
Serie	s Preface		xiv
Ackn	owledgen	nents	xvi
List	of Acrony	7ms	xviii
1	Introdu		1
1.1	Gas Tur	bine Concepts	1 6
1.2	Gas Tur	Gas Turbine Systems Overview	
	Referen	ces	9
2	Basic G	as Turbine Operation	11
2.1	Turbojet Engine Performance		11
	2.1.1	Engine Performance Characteristics	18
	2.1.2	Compressor Surge Control	22
	2.1.3	Variable Nozzles	28
2.2		ling Commentary	35
	Referen	ces	35
3	Gas Ge	nerator Fuel Control Systems	37
3.1		oncepts of the Gas Generator Fuel Control System	37
3.2	Gas Ger	nerator Control Modes	40
	3.2.1	Fuel Schedule Definition	42
	3.2.2	Overall Gas Generator Control Logic	45
	3.2.3	Speed Governing with Acceleration and Deceleration Limiting	46
	3.2.4	Compressor Geometry Control	62
	3.2.5	Turbine Gas Temperature Limiting	63
	3.2.6 Overspeed Limiting		65
3.3	Fuel System Design and Implementation		65
	3.3.1	A Historical Review of Fuel Control Technologies	67
	3.3.2	Fuel Pumping and Metering Systems	72

3.4	The Concept of Error Budgets in Control Design	77
	3.4.1 Measurement Uncertainty	79
	3.4.2 Sources of Error	80
3.5	Installation, Qualification, and Certification Considerations	84
	3.5.1 Fuel Handling Equipment	84
	3.5.2 Full-authority Digital Engine Controls (FADEC)	86
3.6	Concluding Commentary	88
	References	88
4	Thrust Engine Control and Augmentation Systems	89
4.1	Thrust Engine Concepts	89
4.2	Thrust Management and Control	92
4.3	Thrust Augmentation	95
	4.3.1 Water Injection	96
	4.3.2 Afterburning	97
	Reference	103
5	Shaft Power Propulsion Control Systems	105
5.1	Turboprop Applications	110
	5.1.1 The Single-shaft Engine	110
	5.1.2 The Free Turbine Turboprop	112
5.2	Turboshaft Engine Applications	119
	Reference	130
6	Engine Inlet, Exhaust, and Nacelle Systems	131
6.1	Subsonic Engine Air Inlets	131
	6.1.1 Basic Principles	132
	6.1.2 Turboprop Inlet Configurations	133
	6.1.3 Inlet Filtration Systems	135
6.2	Supersonic Engine Air Inlets	136
	6.2.1 Oblique Shockwaves	137
	6.2.2 Combined Oblique/Normal Shock Pressure Recovery Systems	139
	6.2.3 Supersonic Inlet Control	141
	6.2.4 Overall System Development and Operation	143
	6.2.5 Concorde Air Inlet Control System (AICS) Example	144
6.3	Inlet Anti-icing	150
	6.3.1 Bleed-air Anti-icing Systems	151
	6.3.2 Electrical Anti-icing Systems	151
6.4	Exhaust Systems	151
	6.4.1 Thrust Reversing Systems	152
	6.4.2 Thrust Vectoring Concepts	155
	References	160
7	Lubrication Systems	161 161
7.1	Basic Principles	
7.2	Lubrication System Operation	

ļ

	7.2.1	System Design Concept	170
	7.2.2	System Design Considerations	174
	7.2.3	System Monitoring	174
	7.2.4	Ceramic Bearings	179
	Referen		179
8	Power	Extraction and Starting Systems	181
8.1		nical Power Extraction	181
	8.1.1	Fuel Control Systems Equipment	181
	8.1.2	Hydraulic Power Extraction	183
	8.1.3	Lubrication and Scavenge Pumps	184
	8.1.4	Electrical Power Generation	184
8.2	Engine	Starting	187
8.3	Bleed-a	ir-powered Systems and Equipment	189
	8.3.1	Bleed-air-driven Pumps	191
	8.3.2	Bleed Air for Environmental Control, Pressurization and	
		Anti-icing Systems	192
	8.3.3	Fuel Tank Inerting	193
	Referen	0	1 9 4
9	Marine	e Propulsion Systems	195
9.1	Propuls	ion System Designation	197
9.2	The Ae	ro-derivative Gas Turbine Engine	198
9.3		arine Environment	199
	9.3.1	Marine Propulsion Inlets	200
	9.3.2	Marine Exhaust Systems	203
	9.3.3	Marine Propellers	204
9.4	The Engine Enclosure		206
	9.4.1	The Engine Support System	207
	9.4.2	Enclosure Air Handling	208
	9.4.3	Enclosure Protection	208
9.5	Engine	Ancillary Equipment	209
	9.5.1	Engine Starting System	209
	9.5.2	Engine Lubrication System	211
	9.5.3	Fuel Supply System	212
9.6	Marine	Propulsion Control	214
	9.6.1	Ship Operations	214
	9.6.2 '	Overall Propulsion Control	217
	9.6.3	Propulsion System Monitoring	219
	9.6.4	Propulsion System Controller	222
	9.6.5	Propulsion System Sequencer	224
9.7	Concluding Commentary		224
	Referer		225
10	Progno	ostics and Health Monitoring Systems	227
10.1	_	Concepts in Engine Operational Support Systems	229

	10.1.1 Mate	erial Life Limits	229
		formance-related Issues	232
	•	cheduled Events	234
10.2	The Role of D	Design in Engine Maintenance	234
		ability	235
	10.2.2 Main	ntainability	237
	10.2.3 Avai	lability	239
	10.2.4 Fail	ure Mode, Effects, and Criticality Analysis	241
10.3		d Health Monitoring (PHM)	243
	10.3.1 The	Concept of a Diagnostic Algorithm	244
	10.3.2 Qua	lification of a Fault Indicator	245
	10.3.3 The	Element of Time in Diagnostics	250
	10.3.4 Data	a Management Issues	251
	References		255
11	New and Fut	ure Gas Turbine Propulsion System Technologies	257
11.1	Thermal Effici	ency	257
11.2	-	in Propulsive Efficiency	260
	11.2.1 The	Pratt & Whitney PW1000G Geared Turbofan Engine	261
	11.2.2 The	CFM International Leap Engine	264
		Propfan Concept	265
11.3	-	Technology Initiatives	268
		Boeing 787 Bleedless Engine Concept	268
		e Engine Systems Technologies	271
		rgency Power Generation	276
		board Diagnostics	277
	References		277
	-	essor Stage Performance	279
A.1	•	Compressor Stage Characteristics	279
A.2	•••	er from Rotor to Air	281
	References		284
		ion of Compressor Maps	285
B.1	Design Point	•	288
B .2	Stage Stacking	g Analysis	291
	References		293
		odynamic Modeling of Gas Turbines	295
C.1	-	perturbation Modeling	295
		or Dynamics	296
		or Dynamics with Pressure Term	297
a a		ssure Dynamics	298
C.2	•	del: Extended Linear Approach	298
C.3		ased Thermodynamic Models	299
	C.3.1 Inlea	t	301

, ii _____

	C.3.2	Compressor	302
	C.3.3	Combustor	302
	C.3.4	Turbine	304
	C.3.5	Jet Pipe	305
	C.3.6	Nozzle	306
	C.3.7	Rotor	306
	Referer	ices	306
Appe	endix D I	introduction to Classical Feedback Control	307
D.1		g the Loop	307
D.2	Block I	Diagrams and Transfer Functions	308
D.3	The Concept of Stability		310
	D.3.1	The Rule for Stability	310
D.4	Frequency Response		311
	D.4.1	Calculating Frequency Response	311
D.5	Laplace Transforms		315
	D.5.1	Root Locus	317
	D.5.2	Root Locus Construction Rules	318
	Referer	321	
Index	X		323

Index

.7