28,-

Lecture Notes in Operations Research and Mathematical Systems

Economics, Computer Science, Information and Control

Edited by M. Beckmann, Providence and H. P. Künzi, Zürich Series: Institut für Gesellschafts- und Wirtschaftswissenschaften der Universität Bonn. Advisers: H. Albach, F. Ferschl, W. Krelle

44

G. Feichtinger

Institut für Gesellschafts- und Wirtschaftswissenschaften der Universität Bonn

Stochastische Modelle demographischer Prozesse

Springer-Verlag

Berlin · Heidelberg · New York 1971

INHALTSVERZEICHNIS

	Seite
VORWORT	1
KAPITEL 1: EINFÜHRUNG	3
1. Zum mathematischen Modellbegriff	4
1.1. Allgemeine Erwägungen	4
1.2. Funktionen mathematischer Modelle	5
1.3. Die Problematik in der Bevölkerungswissenschaft	5
2. Stochastische Prozesse in der Demographie	7
2.1. Deterministische oder stochastische Analyse?	7
2.2. Grundlagen stochastischer Analysen	9
3. Motivierung von Aufbau und Darstellung	10
3.1. Vorhaben	10
3.2. Wahl der Darstellungsweise	10
3.2.1. Inhaltliche contra methodologische Darstellung	10
3.2.2. Heuristische Darstellungsweise	11
3.3. Klassifikation der Modelle	12
3.3.1. Mikro- und Makromodelle	13
3.3.2. Diskreter oder kontinuierlicher Zeitparameter?	14
3.3.3. Deterministische und stochastische Modelle	15
3.4. Gliederung	16
3.5. Der formale Rahmen	17
3.6. Bemerkungen zur Notation	18
TEIL I: MIKROMODELLE	19
Einleitung und Überblick	19
KAPITEL 2: DEMOGRAPHISCHE PARADIGMEN ABSORBIERENDER MARKOFFKETTEN	,22
1. Demographische Phänomene	22
2. Dekrementmodelle	27
2.1. Modellbeschreibung	27
2.2. Modellanalyse	32
2.2.1. Die Verweildauer bis zur Absorption	33
2.2.1.1. Die Fundamentalmatrix der absorbierenden Kette	33
2.2.1.2. Die durchschnittliche Dauer bis zur Absorption	35
2.2.1.3. Ermitthung der Varianzen der Verweilzeiter	36
2.2.2. Die Wahrscheinlichkeit für eine Absorption	39

	Seite
2.2.2.1. Absorptionsverhalten innerhalb eines Zeitraumes	39
2.2.2. Schließliche Absorptionswahrscheinlichkeiten	40
2.2.2.3. Bemerkungen über Anwendungsmöglichkeiten erzeugender Funktionen	4 2
2.2.3. Transformierte Prozesse	44
2.2.3.1. Ermittlung der transformierten Übergangswahrschein- lichkeiten	44
2.2.3.2. Die Fundamentalmatrix transformierter absorbierender Ketten	47
2.2.3.3. Erwartungswert und Varianz der Zeitspanne bis zur Absorption in einer Teilmenge von absorbierenden Zuständen	49
2.2.4. Der Spezialfall eines Ausscheiderisikos mit Verbleibs- möglichkeit	51
2.3. Modellinterpretationen	54
2.3.1. Altersprozeß	5 4
2.3.2. Erstheiratsmodelle	56
2.3.2.1. Nettoheiratsmodell	56
2.3.2.2. Bruttoheiratsmodell	5 9
2.3.3. Ehelösungsmodelle	62
2.3.3.1. Das Grundmodell	63
2.3.3.2. Allgemeines Ehedauermodell	65
2.3.3.3. Spezielles Ehedauermodell	68
2.3.4. Ein Wiederverheiratungsmodell	71
2.3.5. Zur Wirksamkeitsmessung kontrazeptiver Mittel	72
2.3.5.1. Die Unzulänglichkeit der PEARLschen Rate	73
2.3.5.2. Ein multiples Dekrementmodell	74
3. Mehrtypenmodelle	77
3.1. Das allgemeine Modell und einige Spezialfälle	77
3.1.1. Ein Mikromodell für multiple Tafeln	77
3.1.2. Streng hierarchische Typen	79
3.1.3. Annahmen über die Absorptionsmatrix	80.
3.2. Einige Resultate im Matrizenformalismus	82
3.2.1. Die Fundamentalmatrix von Mehrtypenmodellen	82
3.2.1.1. Die Verweildauer bis zur Absorption	82
3.2.1.2. Die Fundamentalmatrix streng hierarchischer Mehrtypenprozesse	86
3.2.2. Schließliche Absorptionswahrscheinlichkeiten	88
3.2.3. Anwendungsmöglichkeiten transformierter absorbierender Ketten	90
3.2.3.1. Noch einmal: Transformierte Markoffsche Ketten	90
3.2.3.2. Über die Erreichbarkeit von Typen	94

•	Seite
3.2.3.3. Zur Ermittlung der altersspezifischen Typenquoten	99
3.3. Das hierarchische Zweitypenmodell	100
3.3.1. Intensitäten	101
3.3.2. Kalender	. 102
3.3.2.1. Die Zeitspanne bis zum erstmaligen Eintritt in den Typ 2	102
3.3.2.2. Die Anzahl der von einer (1,x)-Person im Typ 2 durchschnittlich verbrachten Jahre	103
3.4. Kombination von Dekrement- zu Mehrtypenmodellen	103
3.4.1. Die sektoralen Modelle	103
3.4.2. Der Zusammenbau zum Mehrtypenmodell	105
3.5. Illustration der Theorie	106
3.5.1. Zweitypenmodelle	106
3.5.1.1. Das reduzierte Familienstandsmodell	106
3.5.1.2. Ein Erwerbstätigkeitsmodell	107
3.5.1.3. Ein Kontrazeptionsmodell nach MASNICK & POTTER	107
3.5.2. Das verallgemeinerte Familienstandsmodell	109
4. Ein verwandtes Modell aus der Erziehungsplanung	111
4.1. Das Modell von THONSTAD	111
4.2. Modellimplikationen	11Ż
4.2.1. Übergangswahrscheinlichkeiten	112
4.2.2. Durchschnittliche Verweilzeiten	113
4.2.3. Absorptionsverhalten	113
APITEL 3: KONKURRIERENDE RISKEN	115
1. Einführung	115
1.1. Interferenz demographischer Phänomene	115
1.2. Historisches	117
1.3. Überblick	119
2. Ein Zugang über die risikospezifischen Ausscheide-	,
intensitäten	119
2.1. Kontinuierliche Version des Dekrementmodells	119
2.1.1. Allgemeine Bemerkungen	119
2.1.2. Das Modell	120
2.1.3. Reine und rohe Wahrscheinlichkeiten	122
2.1.4. Der Zusammenhang zwischen Intensitäten und rohen Wahrscheinlichkeiten	124
2.1.5. Relationen zwischen rohen und reinen Wahrschein- lichkeiten	125
2.2. Herleitung der reinen aus den rohen Abgangswahr- scheinlichkeiten	129

i			Seite
	2.2.1.	Die Annahme konstanter relativer Intensitäten	129
	2.2.2.	Die Linearitätsannahme für abhängige Wahrschein- lichkeiten	130
	2.2.3.	Eine weitere Approximation mittels der Binomialreihe	134
		ar Ermittlung der rohen aus den reinen Ausscheide- ahrscheinlichkeiten	136
	3. Zur kett	Risikoausschaltung mittels transformierter Markoff- ten	138
	3.1. Di	ie Elimination von Wahrscheinlichkeiten	138
	3.1.1.	Proportionale Aufteilung der Wahrscheinlichkeiten	138
	3.1.2.	Vergleichende Diskussion der Modelle zur Risiko- elimination	141
	3.1.3.	Anwendung transformierter Ketten	142
	3.2. Ei	in retrospektives Modell	143
	3.2.1.	Ein transformiertes Markoffsches Mehrtypenmodell zur Messung reiner Wahrscheinlichkeiten	143
	3.2.2.	Retrospektive Betrachtungen	147
	3.2.3.	Ein retrospektives Modell für Erstheiraten	147
KA]	PITEL 4:	REPRODUKTIONSMODELLE	150
	1. Eini	führung	150
	2. Sekt	torale Fruchtbarkeitsmodelle	152
	2.1. Pa	aritätssektorale Prozesse	152
	2.1.1.	Die Fruchtbarkeit h-ten Ranges	152
	2.1.2.	Anwendungen der Dekrementtheorie	153
	2.1.2.1.	Kalender	154
	2.1.2.2.	Intensität	155
	2.1.3.	Zur Messung der reinen Fruchtbarkeit	155
		inbeziehung biologischer Gegebenheiten (Konzeptions-	
		odelle)	157
		Einleitende Bemerkungen	. 157
		Biologische Erwägungen	157
	2.2.1.2.		158
	2.2.1.3.	·	159
	2.2.1.4.		160
	2.2.2.	Ein Konzeptionsmodell mit konstanter Schwangerschaftsdauer und einfachem Schwangerschaftsausgang	- 162
	2.2.2.1.	Ein reguläres Markoffkettenmodell	163
	2.2.2.2	Verwendung erzeugender Funktionen	165
	2.2.2.3	Formulierung als Erneuerungsprozeß	166
	2.2.2.4	Vorschläge für Verallgemeinerungen	168

,	Seite
2.2.3. Das Semi-Markoffmodell von SHEPS und PERRIN	169
2.2.3.1. Modellbeschreibung	170
2.2.3.2. Erstdurchlauf- und Wiederkehrzeiten	172
2.2.3.3. Anzahl der reproduktiven Ereignisse innerhalb eines Zeitraumes	175
2.2.3.4. Grenzverteilung der Zustände	177
2.2.3.5. Abschließende Betrachtungen	178
3. Globale Fertilitätsmodelle	180
3.1. Alters- und paritätsspezifische Fruchtbarkeitsmodelle	180
3.1.1. Modellspezifikation	180
3.1.2. Maßzahlen für die Intensität der Fruchtbarkeit	182
3.1.2.1. Paritätsabhängige Variable	182
3.1.2.2. Paritätsunabhängige Fertilitätsmaße	185
3.1.2.3. Illustration aus der amtlichen Statistik	186
3.1.3. Verweildauer und Wartezeiten	187
3.1.4. Einige Folgerungen	188
3.1.5. Ein reines Fertilitätsmodell	190
3.1.5.1. Folgerungen aus der Theorie konkurrierender Risken	190
3.1.5.2. Abriß der Modellanalyse	192
3.1.6. Retrospektive Fertilitätsanalyse	195
3.1.6.1. Ein Zusammenhang mit dem reinen Fruchtbarkeitsmodell	195
3.1.6.2. Einige Resultate	197
3.2. Das altersspezifische Globalmodell	199
3.3. Kritik am klassischen Gebrauch der Reproduktionsraten	200
TEIL II: DEMOGRAPHISCHE TAFELN	202
Einleitung und Überblick	202
KAPITEL 5: DEKREMENT- UND MEHRTYPENTAFELN	204
1. Beschreibung und Aufbau multipler Dekrementtafeln	204
1.1. Einführung	204
1.2. Erklärung der Tafelfunktionen	205
1.3. Das stationäre Bevölkerungsmodell	212
2. Beispiele für Dekrementtafeln	214
2.1. Heiratstafeln	214
2.1.1. Netto-Heiratstafeln	214
2.1.2. Brutto-Heiratstafeln	215
2.1.3. Über den Zusammenhang zwischen Netto- und Bruttotafeln	215
2.2. Weitere Tafeln mit mehrfachem Abgang	219

		Seite
	3. Mehrtypentafeln	220
·	3.1. Der formale Rahmen	221
	3.1.1. Erklärung der Tafelfunktionen	221
	3.1.2. Relationen zwischen den Tafelfunktionen	222
	3.1.3. Bemerkung zur Schätzung der Wahrscheinlichkeiten	223
	3.2. Anwendungsmöglichkeiten	224
	3.2.1. Familienstandstafeln	224
	3.2.1.1. Die reduzierte Familienstandstafel	224
	3.2.1.2. Das allgemeine Familienstandsmodell	225
	3.2.2. Erwerbstätigkeitstafeln	226
	3.2.3. Weitere Beispiele für Mehrtypentafeln	228
	4. Wahrscheinlichkeitsverteilungen und Momente von Tafel- funktionen	229
	4.1. Das zugrundeliegende stochastische Individualmodell	229
	4.2. Verteilung der Anzahl der Überlebenden	229
	4.3. Gemeinsame Verteilung der Anzahl der Abgänge	231
	4.4. Gemeinsame Wahrscheinlichkeitsverteilung der ursachen- spezifischen Abgänge und der Anzahl der Überlebenden	232
	4.5. Weitere Resultate über die gemischten zweiten Momente	235
	4.6. Über die Typenquoten in Mehrtypenmodellen	236
KA	PITEL 6: ZUR STATISTISCHEN ANALYSE DEMOGRAPHISCHER TAFELN	239
	1. Abriß aus der statistischen Schätztheorie	239
	1.1. Maximum Likelihood-Verfahren	239
	1.1.1. Das ML-Prinzip	239
	1.1.2. ML-Schätzungen bei endlichen Markoffketten	241
	1.1.2.1. Der Fall einer Realisierung	242
	1.1.2.2. Der Fall von n Realisierungen	244
	1.1.3. Eine Invarianzeigenschaft	246
•	1.2. Suffizienz	247
	1.2.1. Zur Definition erschöpfender Schätzfunktionen	247
	1.2.2. Minimalsuffizienz	249
	1.2.3. Gemeinsame Suffizienz	250
•	1.2.4. Anwendung auf Markoffsche Ketten	251
	1.3. Unverfälschte beste Schätzungen	252
	2. Konstruktion von Schätzfunktionen	253
	2.1. Markoffketten als stochastische Individualmodelle für Dekrementtafeln	253
	2.2. Maximum Likelihood-Schätzungen für einjährige Verbleibs und Ausscheidewahrscheinlichkeiten	- 253

•	Seite
2.3. MI-Schätzungen der anderen Modellvariablen	254
2.4. ML-Schätzungen bei transformierten Ketten un konkurrierenden Risken	d 256
3. Die ersten Momente der Maximum Likelihood-Schä	tzungen
gewisser Tafelparameter	257
3.1. Verbleibs- und Abgangswahrscheinlichkeiten	257
3.2. Fernere durchschnittliche Verweildauer	260
3.3. Über die Kovarianzen von ML-Schätzungen gewi weiterer Dekrementparameter	sser 262
3.4. Hinweise zur Schätzung reiner Wahrscheinlich	keiten 264
4. Optimumeigenschaften der Estimatoren	264
4.1. Gemeinsam suffiziente Statistiken für einjäh Verbleibs- und Ausscheidewahrscheinlichkeite	
4.2. Die minimale Varianz einjähriger Verbleibs- Ausscheideanteile	und 265
5. Bemerkungen zum Testen von Hypothesen	265
6. Zur Schätzung von Mehrtypenmodellen	266
TEIL III: MAKROMODELLE	269
	20)
Einleitung und Überblick	269
KAPITEL 7: MATRIZENMODELLE DER BEVÖLKERUNGSDYNAMIK	273
1. Vom Individualmodell zur Makrotheorie	273
1.1. Ein Input/Output-Modell	273
1.2. Stationäre Bevölkerung	276
1.3. Stabile Bevölkerung	278
1.4. Das Schulflußmodell	280
2. Deterministische Matrizenmodelle	281
2.1. Die LESLIE-Matrix	281
2.1.1. Definitionen	281
2.1.2. Die linearen rekursiven Beziehungen	282
2.1.3. Aufspaltung der LESLIE-Matrix	. 284
2.2. Einige Ergebnisse aus der Matrizentheorie	285
2.3. Anwendungen auf das lineare rekursive Makrom	ode l 1 287
2.4. Die Ermittlung der Eigenvektoren der LESLIE-	Matrix 288
2.4.1. Die charakteristische Gleichung von \Lambda	289
2.4.2. Eigenvektoren von A	290
2.4.3. Eigenvektoren von	290
2.5. Stabiler Altersaufbau und reproduktiver Wert	292
2.5.1. Interpretation des dominierenden Eigenwert	es λ ₁ 292

VIII

·	serte
2.5.2. Der Rechtseigenvektor als stabile Altersverteilung	293
2.5.3. Der linke Eigenvektor von l	294
2.5.4. Ein mit der stabilen Bevölkerungstheorie verknüpftes Mikromodell	296
2.6. Zeitlich konstanter Wachstumsfaktor und Geburtenrate	297
3. Das Modell von POLLARD	302
3.1. Problemstellung	302
3.2. Hilfssätze	304
3.2.1. Bedingte Momente	304
3.2.2. Momente bedingter Binomialverteilungen	306
3.3. Rekursionsformeln für die ersten und zweiten Momente von \underline{N}_{xt}	307
4. Ein verallgemeinertes diskretes stochastisches Bevölkerungsmodell	310
4.1. Erweiterung des Modells	310
4.2. Weitere Hilfssätze	312·
4.3. Relationen zwischen den Bestandsvariablen	314
4.4. Erwartungswerte	315
4.5. Die zweiten Momente	316
4.6. Spezialfälle	319
5. Das Kroneckerprodukt 1 x 1 der LESLIE-Matrix	321
5.1. Die Momentenrekursion in Matrizenform	321
5.2. Eigenwerte und -vektoren direkter Matrizenprodukte	323
5.3. Asymptotische Resultate	325
6. Mehrdimensionale Verzweigungsprozesse	331
6.1. Einführung	331
6.2. Momentrekursion für mehrdimensionale Galton-Watson- Prozesse	332
6.3. Darstellung der Kovarianzen-Rekursion mittels M	336
6.4. Quasi-positiv regulare Galton-Watson-Prozesse	338
7. Multiple diskrete Bestandsmodelle	340
7.1. Zweigeschlechtliche Modelle	340
7.2. Stabile Familienstandsmodelle	342
8. Bevölkerungsvorausschätzungen	342
8.1. Bemerkungen zur Methodik bei demographischen Projektione	n 343
8.1.1. Bedingte Prognosen	343
8.1.2. Zu den Vorausschätzungen des Statistischen Bundesamtes	344
8.1.3. Ausblick auf feinere Vorausschätzungsmethoden	345
8.2. Die Varianz von Bevölkerungsprojektionen	34 6

S	Seite
KAPITEL 8: ZUR KONTINUIERLICHEN ANALYSE DES BEVÖLKERUNGSWACHSTUMS	351
1. Zwei einfache Wachstumsmodelle	351
1.1. Exponentielles Wachstum	351
1.2. Logistisches Wachstum	354
2. Altersstruktur einer Bevölkerung	354
3. Die Erneuerungsgleichung der Bevölkerungsmathematik (LOTKAsche Integralgleichung)	359
3.1. Herleitung der Integralgleichung und Lösung mittels Laplace - Transformation	361
3.2. Diskussion der charakteristischen Gleichung	36 4
3.3. Asymptotische Stabilität	367
4. Eigenschaften stabiler Bevölkerungen	369
4.1. Momente und Kumulanten der Netto-Maternitätsfunktion	370
4.2. Der Generationsabstand	371
4.3. Die Todesrate	3,72
4.4. Weitere Hinweise	374
5. Einflüsse von Änderungen der Vitalitätsraten auf den Altersaufbau und die Fruchtbarkeit einer Bevölkerung	375
5.1. Wahre Zuwachsrate und Durchschnittsalter	376
5.2. Konstante Änderung der Sterblichkeit	377
5.3. Interdependenz von Fruchtbarkeit und Zuwachsrate	378
5.4. Abschließende Bemerkungen	379
6. Ein Spezialfall	380
7. Hinweise auf stochastische Makromodelle	3 83
LITERATURVERZEICHNIS	3 85
ANHANG	395