Two-Dimensional NMR Spectroscopy

Applications For Chemists and Biochemists

William R. Croasmun and Robert M.K. Carlson

Contents

George A. Gray	1
Introduction	1
What Are the Benefits of 2D NMR?	2
Can It Be Painless?	2 5 5
How Do I Set Up the 2D NMR Experiment?	5
How Much Sample Do I Need for a 2D NMR Experiment?	6
How Do I Run the 2D NMR Experiment?	6
How and Why Does 2D NMR Work?	10
Preparation	10
Evolution	10
Mixing	10
Detection	11
How Do Pulses Affect Nuclear Spins?	15
The Rotating Frame of Reference	16
The 90° Pulse	17
Precession in the XY Plane	19
Refocusing Pulses	20
Simultaneous A and X 180° Pulses in an AX Coupled System	21
Nonobservable Magnetization and Mixing of Spin States by 90° Pulses	22
Polarization Transfer Pulses	24
The General 2D NMR Experiment	27
Practical Details for the General 2D NMR Experiment	27
Display Modes	29
Data Processing	31
Can I Use What I Already Know About NMR in 2D NMR?	32
Can I Use J-Coupling Information?	33
Data Output in 2D J-NMR	37
Sensitivity in 2D J-NMR	37
Can I Do Selective Experiments on Specific Protons?	38
How Can I Emphasize Long-Range Coupling Information?	38
How Can I Correlate Protons That Are Coupled to Each Other?	40
Data Display and Output	42
How Large a Coupling Is Necessary to Produce a Crosspeak?	44
But What about the Very Small Coupling?	44
How Can I Simplify a Very Crowded COSY Spectrum?	46
Can I Use the Power of ¹³ C to Understand My Proton Spectrum?	47
How Do I Interpret a HECTOR Spectrum?	49

My Proton Spectrum Is Too Crowded for Homonuclear 2D J-Analysis. Can I Get the Information Some Other Way?	51
Can I Correlate My Carbons with Protons Other Than the Bonded	31
Ones?	52
What about Other Nuclei?	56
Is There Any Way to Relate Three Nuclei at Once?	57
How Can I Learn about Nuclei That Are Not Coupled?	59
The Protons Are Really Peripheral to the Carbon Skeleton. How Can	0,
I Determine Directly the Carbon Bonding Framework in My	
Molecule?	61
My Sample Is Too Small to Use Heteronuclear 2D Shift-Correlation	
or Double-Quantum Connectivity. Can I Still Get Connectivity	
Information for Nuclei Other Than Protons?	64
2. Experimental Aspects of Two-Dimensional NMR William E. Hull	67
Introduction: 2D NMR for the Common Man and Woman	67
The Spectrometer	69
Basic Hardware Required for Homonuclear 2D NMR	69
Additional Requirements for Heteronuclear 2D	73
Useful Features for Better Performance and More Sophisticated	
Applications	75
The Data System	77
Minimal Hardware Requirements	77
Software Requirements	80
Useful Additional Features	84
Spectrometer Calibration and Performance Tests	85
Probehead Tuning	85
Pulse Calibration	87
Sensitivity Tests	90
Phase Shifting	90
The Quadrature Receiver	91
The Sample	93
Optimum Sample Preparation	93
How Much Sample is Needed?	94
Preparatory 1D Experiments	95
Temperature Control and Shimming	95
Pulse Calibration	99
Estimation of Relaxation Parameters	99
A High-Resolution Reference Spectrum	101
Optimizing the Spectral Width for 2D	101

The Basic 2D Experiment	102
The Time Domains of 2D NMR	102
2D Data Acquisition Parameters	105
Techniques and Parameters for 2D Processing	109
Plotting of 2D Data	121
Quadrature Detection, F_1 Noise, and Artifacts in 2D NMR	122
Quadrature Detection	122
F_1 Noise	128
Artifacts in 2D NMR	132
Common Homonuclear ¹ H 2D	140
Two-Pulse Sequences	140
A Three-Pulse Sequence: Shift Correlation via Dipolar Interaction	
(NOE) or Chemical Exchange	153
Solvent Suppression	162
Common Heteronuclear 2D Experiments	169
Heteronuclear J-resolved 2D NMR	169
Heteronuclear Shift-correlated 2D NMR	178
Shift Correlation with Elimination of Proton-Proton Couplings	185
Heteronuclear Shift Correlation via Dipolar Interactions	188
Setting Up Heteronuclear Correlation Experiments	189
The INADEQUATE Experiment	191
1D INADEQUATE	191
INADEQUATE 2D for J-Couplings	195
INADEQUATE for 2D Shift-Correlation	195
Symmetrical INADEQUATE	197
Compensated INADEQUATE	198
Detection of Long-Range Connectivities	199
Optimized Heteronuclear Polarization Transfer via Long-Range J	
(COLOC)	199
Local-Remote Discrimination and Observation of $^{n}J_{XH}$	201
Homonuclear Relayed Coherence Transfer	203
Multistep RCT	205
Homonuclear NOESY with RCT	206
Heteronuclear Relayed Coherence Transfer	209
Further Variations and Specialised Techniques	215
Homonuclear COSY, NOESY Variations	215
Homonuclear Correlation with F_1 Decoupling	217
Homonuclear 2D with Multiple-Quantum Filtering (MQF)	218
Multiple-Quantum Spectroscopy	220
"Reverse" Experiments: Heteronuclear Correlation with ¹ H	
Observation	223

3. Strategies for Applying Combinations of	
Two-Dimensional NMR Experiments	233
Michael A. Bernstein	
Introduction	233
General	234
Strengths and Limitations of Some 1D NMR Experiments	236
Double Resonance	236
Relaxation Methods	237
Spectral Editing and Multiplicity Sorting	237
Carbon Connectivity Determination	237
A Brief Summary of Some Useful 2D NMR Experiments	238
Scalar Coupling Information	238
Homonuclear Chemical Shift Correlation	239
Heteronuclear Chemical Shift Correlation	242
Cross-Relaxation	244
Strategies for Integration of 2D NMR Experiments	245
Performing Proton Two-Dimensional Experiments—A Pragmatic	
Approach	246
Strategy 1. ¹ H NMR Spectral Assignment Only	247
Strategy 2. ¹ H and ¹³ C NMR Spectral Assignment	249
Strategy 3. Oligomer Sequencing and Structure Elucidation	
Strategy 4. Aromatic Compounds	251 252
Conclusions	253
4. Two-Dimensional NMR Spectroscopy on the	
Immunosuppressive Peptide Cyclosporin A	259
Horst Kessler, Hartmut Oschkinat and Hans-Rudolf Loosli	
Introduction	259
General Remarks on Structure Elucidation by NMR Spectroscopy	261
Data Presentation	265
Proton Assignments via Homonuclear Techniques	266
General Considerations	266
Assignment Strategy	267
Homonuclear Correlation Spectroscopy (H,H-COSY)	273
COSY 90/45	275
COSY in the Phase-Sensitive Mode	276
H,H-COSY with Delay	277
Relayed Homonuclear Correlation Spectroscopy: H-Relayed	
H,H-COSY	278
Proton Homonuclear Double-Quantum Spectroscopy	279

Sequence Assignment	280		
Extraction of Parameters			
J, δ -Spectroscopy	281		
Differences and Sums within COSY Spectra (DISCO)	281		
Nuclear Overhauser and Exchange Spectroscopy (NOESY)	285		
Carbon, Nitrogen, and Proton Assignment via Heteronuclear			
Techniques	286		
Carbon Assignment	287		
The COLOC Technique Applied to the Aliphatic Carbons '2D INADEQUATE Technique			
in Peptides	294		
Nitrogen Assignments	295		
Conclusion	297		
	301		
David R. Kearns			
Introduction	301		
Proton Relaxation Process in DNA	303		
Relaxation in a Two Spin System	304		
Comparison of 1D and 2D NOE Relaxation Methods	305		
Spectral Densities	308		
Internal Motion in DNA	309		
DNA Structural Features	313		
A Strategy for Structure Determination	316		
NMR Studies of Simple-Sequence DNAs	324		
The Structure of Poly(dA-dT) Poly(dA-dT)	325		
Structure of Poly(dA)·Poly(dT)	329		
Structure of Poly(dI-dC) Poly(dI-dC)	333		
Structure of Poly(dI-dbr ⁵ C)	333		
The B- and Z-Forms of Poly(dG-dC)	333		
Structure of Poly(dm ⁵ C-dG)	333		
The Z-form of d(br ⁵ C-G-br ⁵ C-G-A-T-br ⁵ C-G)	338		
Structure of Poly(dNH ₂ A-dT)	340		
Conformation of r(CGCGCG) ₂	340		
Qualitative 2D NOE Studies of Short DNA Duplexes with Complex			
Qualitative 2D NOE Studies of Short DNA Duplexes with Complex			
Sequences	340		
•	340 341		

6. Application of Two-Dimensional NMR Methods in the Structural Analysis of Oligosaccharides and Other Complex Carbohydrates Janusz Dabrowski	349
Introduction	349
Identification of Sugar Residues in Oligosaccharides: Mapping Intra- residue Spin Coupled Networks	351
Resolving Overlapping Multiplets with Homonuclear <i>J</i> -Resolved Spectroscopy: A Method of Limited Utility for Oligosaccharides Determining Scalar Coupling Connectivities between Sugar Protons by Homonuclear ¹ H- ¹ H Shift-Correlated Spectroscopy: A Method	351
of Particular Importance to Oligosaccharides Determination of Oligosaccharide Sequences and Interresidue Linkage	354
Positions	366
2D NOE	366
Using Combinations of 1D and 2D Methods	367
Heteronuclear ¹ H- ¹³ C Shift-Correlated Spectroscopy	370
Identification and Analysis of Mixtures of Oligosaccharides	373
Polysaccharides	381
Conclusions	383
7. Steroid Structural Analysis by Two-Dimensional NMR William R. Croasmun and Robert M. K. Carlson	387
NMR	387
NMR William R. Croasmun and Robert M. K. Carlson Introduction	
NMR William R. Croasmun and Robert M. K. Carlson Introduction Connectivity Diagrams for Use with Steroid 2D NMR Data	387
NMR William R. Croasmun and Robert M. K. Carlson Introduction Connectivity Diagrams for Use with Steroid 2D NMR Data Primary Considerations in Sample-Limited Steroid Studies	387 392
NMR William R. Croasmun and Robert M. K. Carlson Introduction Connectivity Diagrams for Use with Steroid 2D NMR Data Primary Considerations in Sample-Limited Steroid Studies Field Strength Solvent- and Lanthanide-induced Shifts	387 392 394
NMR William R. Croasmun and Robert M. K. Carlson Introduction Connectivity Diagrams for Use with Steroid 2D NMR Data Primary Considerations in Sample-Limited Steroid Studies Field Strength Solvent- and Lanthanide-induced Shifts Pertinent 1D NMR Methods: Difference Spectroscopy and Spin-	387 392 394 394 397
NMR William R. Croasmun and Robert M. K. Carlson Introduction Connectivity Diagrams for Use with Steroid 2D NMR Data Primary Considerations in Sample-Limited Steroid Studies Field Strength Solvent- and Lanthanide-induced Shifts Pertinent 1D NMR Methods: Difference Spectroscopy and Spin-Lattice Relaxation Studies	387 392 394 394 397
NMR William R. Croasmun and Robert M. K. Carlson Introduction Connectivity Diagrams for Use with Steroid 2D NMR Data Primary Considerations in Sample-Limited Steroid Studies Field Strength Solvent- and Lanthanide-induced Shifts Pertinent 1D NMR Methods: Difference Spectroscopy and Spin-	387 392 394 394 397 399
NMR William R. Croasmun and Robert M. K. Carlson Introduction Connectivity Diagrams for Use with Steroid 2D NMR Data Primary Considerations in Sample-Limited Steroid Studies Field Strength Solvent- and Lanthanide-induced Shifts Pertinent 1D NMR Methods: Difference Spectroscopy and Spin- Lattice Relaxation Studies Difference NOE Partial Relaxation Studies and Relative Spin-Lattice Relaxation Rate Measurements	387 392 394 394 397
NMR William R. Croasmun and Robert M. K. Carlson Introduction Connectivity Diagrams for Use with Steroid 2D NMR Data Primary Considerations in Sample-Limited Steroid Studies Field Strength Solvent- and Lanthanide-induced Shifts Pertinent 1D NMR Methods: Difference Spectroscopy and Spin-Lattice Relaxation Studies Difference NOE Partial Relaxation Studies and Relative Spin-Lattice Relaxation Rate Measurements Disentangling Severely Overlapping Steroid ¹ H Resonances: Homo-	387 392 394 394 397 399 399
NMR William R. Croasmun and Robert M. K. Carlson Introduction Connectivity Diagrams for Use with Steroid 2D NMR Data Primary Considerations in Sample-Limited Steroid Studies Field Strength Solvent- and Lanthanide-induced Shifts Pertinent 1D NMR Methods: Difference Spectroscopy and Spin-Lattice Relaxation Studies Difference NOE Partial Relaxation Studies and Relative Spin-Lattice Relaxation Rate Measurements Disentangling Severely Overlapping Steroid ¹ H Resonances: Homonuclear J-resolved Spectroscopy	387 392 394 394 397 399 399 403
NMR William R. Croasmun and Robert M. K. Carlson Introduction Connectivity Diagrams for Use with Steroid 2D NMR Data Primary Considerations in Sample-Limited Steroid Studies Field Strength Solvent- and Lanthanide-induced Shifts Pertinent 1D NMR Methods: Difference Spectroscopy and Spin-Lattice Relaxation Studies Difference NOE Partial Relaxation Studies and Relative Spin-Lattice Relaxation Rate Measurements Disentangling Severely Overlapping Steroid ¹ H Resonances: Homonuclear J-resolved Spectroscopy Unraveling ¹ H- ¹ H Spin Coupled Networks in Steroids: COSY Identifying Spatially Close but Uncoupled ¹ H Nuclei in Steroid	387 392 394 394 397 399 399
NMR William R. Croasmun and Robert M. K. Carlson Introduction Connectivity Diagrams for Use with Steroid 2D NMR Data Primary Considerations in Sample-Limited Steroid Studies Field Strength Solvent- and Lanthanide-induced Shifts Pertinent 1D NMR Methods: Difference Spectroscopy and Spin-Lattice Relaxation Studies Difference NOE Partial Relaxation Studies and Relative Spin-Lattice Relaxation Rate Measurements Disentangling Severely Overlapping Steroid ¹ H Resonances: Homonuclear J-resolved Spectroscopy Unraveling ¹ H- ¹ H Spin Coupled Networks in Steroids: COSY	387 392 394 394 397 399 399 403
NMR William R. Croasmun and Robert M. K. Carlson Introduction Connectivity Diagrams for Use with Steroid 2D NMR Data Primary Considerations in Sample-Limited Steroid Studies Field Strength Solvent- and Lanthanide-induced Shifts Pertinent 1D NMR Methods: Difference Spectroscopy and Spin-Lattice Relaxation Studies Difference NOE Partial Relaxation Studies and Relative Spin-Lattice Relaxation Rate Measurements Disentangling Severely Overlapping Steroid ¹ H Resonances: Homonuclear J-resolved Spectroscopy Unraveling ¹ H- ¹ H Spin Coupled Networks in Steroids: COSY Identifying Spatially Close but Uncoupled ¹ H Nuclei in Steroid	387 392 394 397 399 399 403 404 412

8. Applications of Two-Dimensional NMR to the Characterization of Organic Compounds: Relative Configurational Assignment of a Key Synthetic Precursor to Spatol Peter L. Rinaldi	425
	40.5
Introduction	425
Results and Discussion Structure Solution by High Field NMP	429 429
Structure Solution by High-Field NMR Structure Solution by Low-Field NMR	429
Conclusion Conclusion	443
9. Two-Dimensional NMR Experiments in Natural Products Chemistry: Biological and Geochemical Applications Gary E. Martin	445
Introduction	445
Biologically Derived Natural Products—Alkaloids and Terpenes	447
Assignment of the Side Chain Proton Resonances of an Analogue of	
Secogorgosterol: Power of the COSY Experiment	447
Assignment of the ¹³ C NMR Spectrum of the Cembranoid Diterpene	
Eunicin	451
Elucidation of the Structure of Plumericin: COSY or Proton Double-Quantum Spectral Methods Used in Combination with Heteronuclear Chemical Shift Correlation	455
	433
Determination of the Structure of Isopteropodine: Heteronuclear	461
Relayed Coherence Transfer (RELAY) Geochemically Derived Materials—Polynuclear Aromatic Thiophenes	469
Specific Difficulties Inherent in the Spectral Assignment of	407
Phenanthro[3,4-b]thiophene and its Homologues	471
Development of an Assignment Strategy	471
¹ H and ¹³ C NMR Spectral Assignment	472
Extension of the Chemical Shift Behavior Observed in Phenanthro-	7/2
[3,4-b]thiophene to Benzo[b]phenanthro[4,3-d]thiophene and	
Phenanthro[4,3-a]dibenzothiophene: The Successes and Failures	
of the Approach	479
An Overview of the Prospects for Further Developments in the	.,,
Application of Two-Dimensional NMR Spectroscopy to Complex	
Problems of Natural-Products Chemistry	490
Modifications of Existing Experiments	491
New Two-Dimensional NMR Experiments	491

Glossary	497
Index	501