NONSTOICHIOMETRY AND RELATED PROPERTIES OF CERAMIC INTERFACES

J. Nowotny

Abstract
1

1. Introduction
1

2. Aspects of Materials Characterisation
2

2.1. Chemical Composition
2

2.2. Structure
2

2.3. Nonstoichiometry
2

3. Nonstoichiometry and Defect Structure
4

3.1. Bulk Phase
5

3.1.1. Binary Metal Oxides
5

3.1.1.1. Effect of $p(O_2)$ on Composition
5

3.1.1.2. Effect of $p(O_2)$ on the Mobility of Electronic Charge Carriers
7

3.1.1.3. Effect of Aliovalent Ions
9

3.1.2. Ternary Metal Oxides
9

3.2. Interface Layer
9

3.2.1. Surface Charge Neutrality Requirements
9

3.2.2. Binary Metal Oxides
10

3.2.3. Ternary Oxides
11

3.3. Bidimensional Surface Structures
15

3.4. Conclusions
15
4. Effect of Interfaces on Transport
 4.1. Effect of Segregation-Induced Electric Fields
 4.2. Effect of the Local Doping of the Interface layer
 4.3. Surface Equilibration Kinetics
 4.4. Conclusions

5. Semiconducting Properties of Interfaces
 5.1. Effect of Aliovalent Ions
 5.2. Thin Films
 5.3. Conclusions

6. Applied Aspects
 6.1. Effect on Sintering
 6.2. Ceramic Gas Sensors
 6.3. Nonlinear Effects
 6.4. Catalysts
 6.5. High Tc Superconductors
 6.6. Metallization of Ceramics
 6.7. Conclusions

7. Interface Engineering
8. Questions to be Answered
9. Summary

Acknowledgements
References

STUDIES OF INTERFACIAL BEHAVIOR IN CERAMICS VIA MICRODESIGNED INTERFACES
A. M. Glaeser

Abstract

1. Introduction
2. Experimental Procedure
 2.1. Overview
 2.1.1. Mask Preparation
 2.1.2. Photolithography
 2.1.3. Etching
 2.1.4. Hot Pressing
 2.1.5. Modes of Observation
 2.2. Limitations
 2.3. Extensions

3. Applications
 3.1. Grain Boundary Migration in Dense Alumina
 3.2. Pore-Boundary Interactions and Surface Transport in Alumina
3.3. High Temperature Crack Healing
 3.3.1. Background 50
 3.3.2. Crack Healing in Undoped Sapphire 52
 3.3.3. Crack Healing in Doped Sapphire 56

4. Summary and Conclusions 65
Acknowledgements 66
References 67

INTERFACES IN ZIRCONIA BASED ELECTROCHEMICAL SYSTEMS AND THEIR INFLUENCE ON ELECTRICAL PROPERTIES 71

S.P.S. Badwal and J. Drennan

Abstract 71
1. Introduction 71
2. General Comments 72
3. Electrode Reactions at Electrode/Electrolyte Interfaces 73
 3.1. Electrode Morphology 75
 3.2. Relatively Clean Interfaces 78
 3.3. Existence of Interphase due to Segregation 79
 3.4. Existence of Interphase due to Reaction/Diffusion 82
 3.5. Interfaces Between Components of a Composite Electrode 86
4. Interfaces within the Electrolyte Grains 88
 4.1. Precipitation of a Second Phase within the Grains 88
 4.2. Compositional Variations 93
 4.3. Second Phase Inclusions 97
 4.4. Microdomain Formation and Ordering 97
5. Interfaces Between Grains (Grain Boundaries) 100
 5.1. Phase Free Boundaries 100
 5.2. Intermediate Phase Formation from the Matrix 100
 5.3. Intermediate Phases of the Impurity Type 102
 5.4. Inclusions 103
6. Conclusions 105
7. Acknowledgements 106
8. References 106
APPLICATION OF LOW ENERGY ION SCATTERING
TO OXIDIC SURFACES

H.H. Brongersma, P.A.C. Groenen and J.-P. Jacobs

Abstract

1. Introduction
 1.1. An Introduction to LEIS on Oxides
 1.2. Principle of LEIS
 1.3. Application of LEIS

2. Experimental
 2.1. Introduction
 2.2. Energy Analyzers for Scattered Particles
 2.3. Experimental Factors Complicating the Analysis
 2.4. Interpretation of Energy Spectra
 2.5. Choice of Experimental Conditions
 2.6. Fitting of LEIS Spectra
 2.7. Change of the Surface Composition by the Analysis
 2.8. Compositional Depth Profiling

3. Quantification of Surface Composition
 3.1. Introduction
 3.2. Ion Fraction
 3.3. Quantification and the Presence of Matrix Effects
 3.4. Influence of Contamination
 3.5. Calibration Against Other Methods
 3.6. Quantification by the DISC Method
 3.7. Surface Roughness

4. Surface Structure of Single Crystals
 4.1. Introduction
 4.2. Local Atomic Structure
 4.3. Surface Defects
 4.4. Site Labeling

5. Surface Structure of Non-Single Crystals
 5.1. Introduction
 5.2. The Energy Method
 5.3. Spinels and the Importance of the Information Depth
 5.4. Signal as Function of Loading

6. Applications of LEIS to Surface Segregation
 6.1. Introduction
 6.2. Surface Segregation
 6.3. Surface Segregation and Spinels

7. Grov

A.E. Hughes

1. Introduction
2. Introduction

References
INTERFACIAL PHENOMENA IN \(Y_2O_3-ZrO_2\)-BASED CERAMICS:
A SURFACE SCIENCE PERSPECTIVE

A.E. Hughes

Abstract

1. Introduction

2. Interfaces in ZrO\(_2\) Ceramics
 2.1. Origin of Impurity Phases
 2.2. Segregation Models
 2.3. Interfacial Development
 During Sintering
 2.4. Grain Boundaries in the
 Fully Dense State

3. Some Comments on Surface
 Analytical Techniques
 3.1. Core level Binding Energy Shifts
 3.2. Defect Structures

4. \(Y_2O_3-ZrO_2\)
 4.1. Phase Diagram
 4.2. Single Crystal Cubic-
 Stabilized \(Y_2O_3-ZrO_2\)
 4.3. Polycrystalline Fully-
 Stabilized \(Y_2O_3-ZrO_2\)
 4.4. Polycrystalline Tetragonal \(Y_2O_3-ZrO_2\)
 4.4.1. Solute Partitioning and
 Grain Growth
 4.4.2. Superplasticity
 4.5. Low Temperature Degradation
 4.5.1. Models

5. CeO\(_2\)-\(Y_2O_3-ZrO_2\)

6. Al\(_2O_3\)-\(Y_2O_3-ZrO_2\)

7. Conclusions

8. References
IMPORTANT ROLE OF THE INTERFACES IN THE HIGH TEMPERATURE SUPERCONDUCTORS

S.X. Dou and H.K. Liu

Abstract

1. Introduction

2. Weak Links at Grain Boundaries
 2.1. Impurity in the Boundaries
 2.2. Grain Misorientation
 2.3. Charge Distribution in the Boundaries
 2.4. Composition Change in the Boundaries
 2.5. Phase Change Near the Boundaries

3. Geometrical Models for Boundaries
 3.1. Flux Pinning Boundaries
 3.2. Geometrical Model for Lattice Match

4. Grain Boundaries in Textured Bi-Pb-Sr-Ca-Cu-O
 4.1. High J_c in Ag/Bi-Based HTSC Tapes
 4.2. Magnetic Field Dependence of J_c for these Tapes
 4.3. 'Brickwall' Model
 4.4. No Evidence of Weak Links of Ag/Bi-Based Tapes at 77 K
 4.5. Grain Boundary Structure in Textured BSCCO
 4.6. Grain Alignment

5. Flux Pinning Mechanism in BSCCO
 5.1. Intrinsic Pinning
 5.2. Defect Pinning

6. Special Role of Ag/BSCCO Interface on Mechanical Properties

7. Summary

Acknowledgements

References

THE ROLE OF INTERFACES IN NUCLEAR TECHNOLOGY

M. Yamawaki

Abstract

1. Introduction
SOME ASPECTS OF GRAIN BOUNDARY DIFFUSION IN OXIDES

E.G. Moya

Abstract

1. Introduction

2. Interface Diffusion and Solid State Reactions
 2.2. Oxidation of Metals
 2.3. Metal-Ceramic Bond

3. Grain Boundary Diffusion and Defects in Oxides
 3.1. Space Charge and Intrinsic Segregation
 3.2. Extrinsic Segregation
 3.3. Precipitation Along Grain Boundaries

4. Grain Boundary Diffusion: Direct Measurement Methods

Remarks

5. Reviews on Al₂O₃, Cr₂O₃, NiO and CoO

Comments and Discussion

6. Conclusions

7. References

CHEMICAL AND STRUCTURAL ALTERATION IN THE SURFACE LAYERS OF OXIDES AND SULPHIDES

R.St.C. Smart, P. Arora, R. Hayes, B-S. Kim, C. Prestidge and J. Ralston

Abstract

1. Introduction

2. Solution Induced Restructuring of Oxide Surfaces

3. Formation of Surface Silicate Structures in Oxide Films

4. Solution-Induced Restructuring of Sulphide Surfaces
5. Oxidation of Sulphide Surfaces: Effects of Impurity Sites
6. Summary and Conclusions
7. References

INTERFACES IN CERAMIC SUBSTRATES
K. Niwa

Abstract
1. Introduction
2. Aluminium Nitrate
3. Low Temperature Sintering Ceramics
4. Magnesia Substrate
5. Conclusions
6. References

DIFFUSION-INDUCED GRAIN BOUNDARY PHENOMENA IN METALS AND OXIDE CERAMICS
E. Rabkin, C.Y. Ma and W. Gust

Abstract
1. Introduction
2. General Definitions
3. Diffusion-Driven Interface Phenomena in Nonmetals
 3.1. DIGM in ZrO$_2$-Based Ceramics
 3.2. Observations in other Ceramic Materials
4. What is Still Unclear in DIGM?
5. Model based on the Gradient Term in the Expression for the Free Energy of an Alloy
 5.1. Stationary GB Motion
 5.2. Initial Stages of DIGM
6. Fournelle's Vacancy Mechanism of DIGM
7. Conclusions
8. Acknowledgements
9. References

THIN FILMS OF CERAMICS AND RELATED SYSTEMATIC
K. Uematsu a

Abstract
1. Introduction
2. The
3. Syst
from
THIN FILMS ON GRAIN BOUNDARIES IN METALS AND
CERAMICS AND THEIR IMPORTANCE FOR THE PROPERTIES
OF THE MATERIALS

E. Rabkin

Abstract
1. Introduction
2. Grain Boundary Wetting
 2.1. Bicrystal in Contact with the Melt
 2.2. Wetting in Multiphase Systems
3. Stability of Thin Intergranular Films
 3.1. Two-Phase Region
 3.2. Single-Phase Region
4. 9R Phase in the Structure of Twins in Cu and Ag
5. Grain Boundary Amorphization During Plastic Deformation
6. Grain Boundaries at the Bulk Order-Disorder Transformations
7. Grain Boundary Roughening
 8.1. Mechanical Properties
 8.2. Grain Boundary Migration
 8.3. Diffusion-Activated Sintering
9. Concluding Remarks
10. Acknowledgements
11. References

SYSTEMATIC UNDERSTANDING OF CERAMIC PROCESSING
AND RELATED INTERFACIAL PHENOMENA

K. Uematsu and Y. Zhang

Abstract
1. Introduction
2. The Liquid Immersion Technique
 2.1. The Principle of the Method
 2.2. Structure of Granules Prepared by Spray-Drying
3. Systematic Understanding on Features from Granules to Ceramics

References
INTERFACE PHENOMENA IN SYNROC,
A TITANATE-BASED NUCLEAR WASTE CERAMIC 431

E.R. Vance, C.J. Ball, M.G. Blackford, R.A. Day
G.R. Lumpkin, K.L. Smith, K.P. Hart, P. McGlinn
and G.J. Thorogood

Abstract 431
1. Introduction 431
2. Radiation Damage Effects 433
3. Intergranular Films 436
4. Leaching at the Water-Synroc Interface 437
5. Conclusions and Final Remarks 438
6. References 439

CHEMICAL AND POLAR NANODOMAIN FLUCTUATIONS
IN RELAXOR-TYPE LEAD SCANDIUM TANTALATE 441

L.A. Bursill, J.L. Peng and H. Qian

Abstract 441
1. Introduction 442
2. Experimental 443
3. HRTEM Results 444
3.1. Introduction to the Technique 444
3.2. HRTEM Results 444

COPPER AND NICKEL
CRYSTAL SURFACES

P. J. Møller

Abstract 445
1. Introduction 446
2. Experimental 447
3. Results 448
4. Discussion 449

ACKNOWLEDGMENTS 451
4.1. Cu on MgO (100) and MgO (111) 478
4.2. Ni on MgO (100) 480
4.3. Cu on CaO (100) 480
4.4. Ni on NiO (100) 482

5. Copper and Nickel on Rutile Structures 484
5.1. Cu on TiO₂ (110) 487
5.2. Ni on TiO₂ (110) 496
5.3. Ni on TiO₂ (100) 498

6. Copper and Nickel on Corundum Structures 498
6.1. Cu on Al₂O₃ (0001) 499
6.2. Ni on α-Al₂O₃ (0001) 504
6.3. Cu on α-Fe₂O₃ (0001) 506
6.4. Cu on α-Fe₂O₃ (1012) 507

7. Copper on Perovskite Structures 508
7.1. Cu on SrTiO₃ (100) 509

8. Copper and Nickel on Wurtzite Structures 511
8.1. Cu on ZnO (0001) 512
8.2. Cu on ZnO (0001) 513
8.3. Cu on ZnO (1010) 514
8.4. Cu on ZnO (1120) 517
8.5. Ni on ZnO (0001) and ZnO (001) 519

9. Copper on Fluorite Metal-Oxide Structures 520

Acknowledgements 522
References 522

THE SURFACE CHEMISTRY OF TIN (IV) OXIDE:
DEFECTS, DOPING AND CONDUCTIVITY 527

R.G. Egdell

Abstract 527
1. Introduction 527

2. The Structure of Tin (IV) Oxide Surfaces 529
2.1. Single Crystal Surfaces 529
2.2. Polycrystalline Surfaces 536

3. Electronic Structure and Defect States 537
3.1. Photoemission and Bulk Bands Structure 537
3.2. Oxygen Deficient Surfaces: States in the Bulk Bandgap 543

4. n-Type Doping of Tin (IV) Oxide 547
4.1. Doping in Polycrystalline and Thin Film Material 547
4.2. Surface Studies of Sb-Doped SnO₂ 550
4.3. Doping by Ion Implantation 555

5. Surface Vibrational Spectroscopy 559

IMPACT OF GRAIN BOUNDARIES ON PROPERTIES OF MULLITE AS A SOLID ELECTROLYTE

K. Yamana, M. Miyamoto, K. Doi, T. Arahori and J. Nowotny

Abstract
1. Introduction
2. General Considerations
3. Basic Properties
 3.1. Phase Diagram in the \(\text{Al}_2\text{O}_3-\text{SiO}_2 \) System
 3.2. Crystal Structure
 3.3. Microstructure
 3.4. Mechanical Properties
 3.5. Thermal Shock Resistance
4. Mullite as an Oxygen Conductor
5. Conclusions
6. Acknowledgements
7. References

HIGH TEMPERATURE EMBRITTLEMENT OF CERAMIC MATRIX COMPOSITES - INTERFACE EFFECTS

J.L. Cocking

Abstract
1. Introduction
2. Experimental
 2.1. Nominal Composition
 2.2. Mechanical Testing
 2.3. Instrumental Techniques
3. Results
 3.1. Room Temperature Mechanical Behavior
 3.2. High Temperature Mechanical Behavior
 3.3. Characterisation of the Room Temperature Composite
3.4. Characterisation of the 1000°C Composite

H. Kishi and N. Yamaoka

Abstract

1. Introduction

2. Dielectric Materials
 2.1. Composition and Powder Preparation
 2.2. Equilibrium Electrical Conductivity
 2.3. Electrical Conductivity at the Cooling Stage
 2.4. Dielectric Properties
 2.5. Microstructural Observation

3. Multilayer Ceramic Capacitors
 3.1. Fabrication of MLC
 3.2. Electrical Properties of MLCs

4. Conclusion

5. References

DIRECT ENERGY BY AN OXIDE AND ITS APPLICABILITY

D.Y. Wang

Abstract

1. Introduction

2. Theoretical Development

3. Experimental Results

4. Conclusions

5. Acknowledgements

6. References

MULTILAYER CERAMIC CAPACITORS WITH NICKEL ELECTRODES

H. Ichimura and A. Kawana

Abstract

1. Introduction

2. Experimental Details

3. Results and Discussion

3.1. High Temperature Oxidation of TiN

3.2. High Temperature Oxidation of CrN

3.3. Aqueous Corrosion Behavior

4. Conclusions

5. References

CORROSION PROPERTIES OF ION PLATED TiN AND CrN COATINGS

H. Ichimura and A. Kawana

Abstract

1. Introduction

2. Experimental Details

3. Results and Discussion

3.1. High Temperature Oxidation of TiN

3.2. High Temperature Oxidation of CrN

3.3. Aqueous Corrosion Behavior

4. Conclusions

5. References
LIST OF AUTHORS

T. Arahori (571)*
Sumitomo Metal Industries, Ltd.
Advanced Technology Research Laboratories
16, Sunayama, Hasaki, Ibaraki, 314-02, Japan

P. Arora (311)
Particle and Surface Technology Research Group
University of South Australia
The Levelis, South Australia 5095, Australia

S.P.S. Badwal (71)
CSIRO
Division of Materials Science and Technology
Clayton, Victoria 3168, Australia

C.J. Ball (431)
ANSTO
Advanced Materials Program
Lucas Heights Research Laboratories
Menai, NSW 2234, Australia

M.G. Blackford (431)
ANSTO
Advanced Materials Program
Lucas Heights Research Laboratories
Menai, NSW 2234, Australia

H.H. Brongersma (113)
Faculty of Physics and Schuit Institute of Catalysis
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven, The Netherlands

L.A. Bursill (441)
School of Physics
The University of Melbourne
Parkville, Victoria 3052, Australia

J.L. Cocking (593)
Ship Structures and Materials Division
Materials Research Laboratory
DSTO
PO Box 50, Ascot Vale, Victoria 3032, Australia

*/ Numbers in parantheses indicate the pages on which the Author's contributions begin
R.A. Day (431)
ANSTO
Advanced Materials Program
Lucas Heights Research Laboratories
Menai, NSW 2234, Australia

J. Drennan (71)
CSIRO
Division of Materials Science and Technology
Clayton, Victoria 3168, Australia

K. Doi (571)
Sumitomo Metal Industries, Ltd
Advanced Materials Division
1-3, Ote-machi, 1-chome, Chiyoda-ku
Tokyo 100, Japan

S.X. Dou (239)
School of Materials Science and Engineering
University of New South Wales
Kensington, NSW 2033, Australia

R.G. Egdell (527)
Inorganic Chemistry Laboratory
South Parks Road
Oxford, OX1 3QR, UK

A.M. Glaeser (33)
Department of Materials Science and Mineral Engineering
University of California
Lawrence Berkeley Laboratory
Berkeley, CA 94720, USA

P.A.C. Groenen (113)
Faculty of Physics and Schuit Institute of Catalysis
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven, The Netherlands

W. Gust (353)
Max-Planck-Institut fur Metallforschung
Seestra. 75
70174 Stuttgart, Germany

K.P. Hart (431)
ANSTO
Advanced Materials Program
Lucas Heights Research Laboratories
Menai, NSW 2234, Australia

R. Hayes (311)
Particle and Surface Technology Research Group
University of South Australia
The Levels, South Australia 5095, Australia

A.E. Hughes (183)
CSIRO
Division of Materials
Normanby Road
Clayton, Victoria

H. Ichimura (629)
Sumitomo Metal Mfg Co., Ltd
Central Research
18-5, 3-Chome, Nakameguro
Meguro-ku, Tokyo 153, Japan

J.-P. Jacobs (113)
Faculty of Physics
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven,

A. Kawana (629)
Sumitomo Metal Mfg Co., Ltd
Central Research
18-5, 3-Chome, Nakameguro
Meguro-ku, Tokyo 153, Japan

B-S. Kim (311)
Particle and Surface Technology Research Group
University of South Australia
The Levels, South Australia

H. Kishi (613)
Taiyo Yuden Co., Ltd
Takasaki, Gunma, Japan

H.K. Liu
School of Materials Science and Engineering
University of New South Wales
Kensington, NSW 2033

G.R. Lumpkin (431)
ANSTO
Advanced Materials Program
Lucas Heights Research Laboratories
Menai, NSW 2234, Australia

C.Y. Ma (353)
Max-Planck-Institut fur Metallforschung
Seestra. 75
70174 Stuttgart, Germany

P. McGlinn (431)
ANSTO
Advanced Materials Program
Lucas Heights Research Laboratories
Menai, NSW 2234, Australia

M. Miyamoto (571)
Industrial Research Institute of Tohoku Prefecture
3-1-2, Tomizuru-cho, Sendai, Japan

A.E. Hughes (183)
CSIRO
Division of Materials Science and Technology
Clayton, Victoria

H. Ichimura (629)
Sumitomo Metal Mfg Co., Ltd
Central Research Laboratories
18-5, 3-Chome, Nakameguro
Meguro-ku, Tokyo 153, Japan

J.-P. Jacobs (113)
Faculty of Physics
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven, The Netherlands

A. Kawana (629)
Sumitomo Metal Mfg Co., Ltd
Central Research Laboratories
18-5, 3-Chome, Nakameguro
Meguro-ku, Tokyo 153, Japan

B-S. Kim (311)
Particle and Surface Technology Research Group
University of South Australia
The Levels, South Australia

H. Kishi (613)
Taiyo Yuden Co., Ltd
Takasaki, Gunma, Japan

H.K. Liu
School of Materials Science and Engineering
University of New South Wales
Kensington, NSW 2033

G.R. Lumpkin (431)
ANSTO
Advanced Materials Program
Lucas Heights Research Laboratories
Menai, NSW 2234, Australia

C.Y. Ma (353)
Max-Planck-Institut fur Metallforschung
Seestra. 75
70174 Stuttgart, Germany

P. McGlinn (431)
ANSTO
Advanced Materials Program
Lucas Heights Research Laboratories
Menai, NSW 2234, Australia

M. Miyamoto (571)
Industrial Research Institute of Tohoku Prefecture
3-1-2, Tomizuru-cho, Sendai, Japan
A.E. Hughes (183)
CSIRO
Division of Materials Science and Technology
Normanby Road
Clayton, Victoria 3168, Australia

H. Ichimura (629)
Sumitomo Metal Mining Co., Ltd.
Central Research Laboratory
18-5, 3-Chome, Nakakokubun Ichikawa, Chiba, 272, Japan

J.-P. Jacobs (113)
Faculty of Physics and Schuit Institute of Catalysis
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven, The Netherlands

A. Kawana (629)
Sumitomo Metal Mining Co., Ltd.
Central Research Laboratory
18-5, 3-Chome, Nakakokuban Ichikawa, Chiba, 272, Japan

B.-S. Kim (311)
Particle and Surface Technology Research Group
University of South Australia
The Levels, South Australia 5095, Australia

H. Kishi (613)
Taiyo Yuden Co., Ltd.
Takasaki, Gunma, 370, Japan

H.K. Liu
School of Materials Science and Engineering
University of New South Wales
Kensington, NSW 2033, Australia

G.R. Lumpkin (431)
ANSTO
Advanced Materials Program
Lucas Heights Research Laboratories
Menai, NSW 2234, Australia

C.Y. Ma (353)
Max-Planck-Institut fur Metallforschung
Seestr. 75, 70147 Stuttgart, Germany

P. McGlinn (431)
ANSTO
Advanced Materials Program
Lucas Heights Research Laboratories
Menai, NSW 2234, Australia

M. Miyamoto (571)
Industrial Research Institute of Ishikawa
Ro-1, Tomizu-machi, Kanazawa, Ishikawa 920-02, Japan
G.J. Thorogood (431)
ANSTO, Advanced Materials Program
Lucas Heights Research Laboratories
Menai, NSW 2234, Australia

K. Uematsu (399)
Department of Chemistry
Nagaoka University of Technology
Kamitomioka 1603-1, Nagaoka, Niigata, Japan 940-21

E.R. Vance (431)
ANSTO, Advanced Materials Program
Lucas Heights Research Laboratories
Menai, NSW 2234, Australia

Da Yu Wang (645)
GM, NAO R&D
Warren, MI 48090-9055, USA

K. Yamana (571)
Industrial Research Institute of Ishikawa
Ro-1, Tomizu-machi, Kanazawa, Ishikawa 920-02, Japan

N. Yamaoka (613)
Taiyo Yuden Co.,Ltd.
Takasaki, Gunma, 370, Japan

M. Yamawaki (267)
Nuclear Engineering Research Laboratory
Faculty of Engineering
University of Tokyo
Hongo, Bunkyo-ku, Tokyo 113, Japan

Y. Zhang (399)
Department of Chemistry
Nagaoka University of Technology
Kamitomioka 1603-1, Nagaoka, Niigata, Japan 940-21