NONEQUILIBRIUM HYPERSONIC AEROTHERMODYNAMICS

Chul Park

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS

New York / Chichester

Brisbane

1

/ Toronto

Singapore

1

CONTENTS

SYMBOLS 1. PHYSICAL NATURE OF GAS ATOMS AND MOLECULES		xv 1,
	,	
1.5.	•	
	References, 26	
TRA	NSITIONS OF INTERNAL STATES	43
2.1.	Collisional Transitions in Atoms. 43	
		d
		,
2.3.	1 7	
	References, 81	
FOR	RMULATION OF MASTER EQUATION	89
3.1.	Formulation of Relaxation in Atomic Systems, 89	
3.2.	Application of Relaxation in Atomic Systems, 92	
	PHY 1.1. 1.2. 1.3. TRA 2.1. 2.2. 2.3. 2.4. 2.5. FOR 3.1.	 PHYSICAL NATURE OF GAS ATOMS AND MOLECULES 1.1. Structure of Atoms, 1 1.2. Structure of Diatomic Molecules, 8 1.3. Classical Description of Diatomic Molecules, 18 Exercises, 25 References, 26 TRANSITIONS OF INTERNAL STATES 2.1. Collisional Transitions in Atoms, 43 2.2. Collisional Transitions in Molecules by Heavy-Particle Impact, 51 2.3. Collisional Transitions in Molecules by Electron Impact, 67 2.4. Classical Trajectory Theory of Molecular Excitation, 71 2.5. Radiative Transitions, 76 Exercises, 80 References, 81 FORMULATION OF MASTER EQUATION 3.1. Formulation of Relaxation in Atomic Systems, 89

vii

- 3.3. Classical Formulation of Molecular Relaxation, 97
- 3.4. Reaction, Vibrational Energy Removal, and Vibrational Relaxation Rates, 103
- 3.5. Electronic Excitation, Non-Quasi-Steady-State Distribution and Rates, 111
 Exercises, 115
 References, 116

4. FORMULATION OF CONSERVATION EQUATIONS

- 4.1. Internal Energies in Nonequilibrium, 119
- 4.2. Energy Exchanges among Different Modes, 124
- 4.3. Mass and Momentum Conservation Equations, 129
- 4.4. Energy Conservation Equations, 133
- 4.5. Chemical Reaction Rate Expressions, 136
- 4.6. Wall Boundary Conditions for Chemical Variables, 139 Exercises, 142 References, 143

5. CHEMICAL REACTIONS IN COMPUTATIONAL FLUID DYNAMICS

- 5.1. Setting up Computational Equations, 145
- 5.2. Fast Chemical Reactions, 149
- 5.3. Coupling between Fluid Motion and Chemical Reactions, 154
- 5.4. Wave Propagation, 160
- 5.5. Pitfalls and Tricks, 165 Exercises, 169 References, 170

6. BEHAVIOR OF AIR FLOWS IN NONEQUILIBRIUM

- 6.1. Normal Shock in Air at Low Hypersonic Mach Numbers, 171
- 6.2. Normal Shock in Air at High Hypersonic Mach Numbers, 178
- 6.3. Expanding Flows, 185
- 6.4. Effects of Nonequilibrium on Flow Field and Pressure Distribution, 194
- 6.5. Nonequilibrium in Base Flow and Wakes, 203
- 6.6. Convective Heat Transfer Rates and Wall Catalysis, 206 References, 214

145

119

171

7. EXPERIMENTAL ASPECTS OF NONEQUILIBRIUM FLOW 219

- 7.1. Radiation from Air and Its Determination, 219
- 7.2. Line Profiles, Emission, and Absorption in Nonequilibrium Flows, 224
- 7.3. Chemical Phenomena in High Enthalpy Wind Tunnels, 233
- 7.4. Chemical Phenomena in Impulse Facilities, 240 References, 254

8. REVIEW OF EXPERIMENTAL RESULTS

- 8.1. Rate Coefficient Data for Reactions of Neutral Species, 255
- Rate Coefficient Data for Reactions Involving Charged Particles, 268
- 8.3. Laboratory Measurements of Radiation, 281
- 8.4. Flight Measurements of Radiation and Electrons, 293
- 8.5. Flight Aerodynamic Data, 306 References, 316

9. GAS-SOLID INTERACTION

- 9.1. Structure of Solids, 329
- 9.2. Gas-Surface Equilibrium, 333
- 9.3. Kinetics of Adsorption, Desorption, Evaporation, and Condensation, 339
- 9.4. Surface-Catalytic Recombination, 344
- 9.5. Gas-Surface Reactions and Roughness, 349 References, 352

INDEX

355

255

329