Teuvo Kohonen

Self-Organization and Associative Memory

With 93 Figures

BIBLIOTHEK Inventar-Nr.: <u>105364</u> Sachgebiete: Standort:	Techniache Univera#ät Darmstadt FACHBEREICH INFORMATIK
Inventar-Nr.: 1105-00364 Sachgebiete: Standort:	BIBLIOTHEK
Sachgebiete: Standort:	Inventar-Nr.: 105-00364
Standort:	Sachgebiete:
	Standort:

Inventar-Nr. 1

Hochschulrechenzentrum Technische Hochschule Petersenstr. 61 Darmstadt

Springer-Verlag Berlin Heidelberg New York Tokyo 1984

Contents

1.	Var	ious Aspects of Memory	1
	1.1	On the Purpose and Nature of Biological Memory	1
		1.1.1 Some Fundamental Concepts	1
		1.1.2 The Classical Laws of Association	3
		1.1.3 On Different Levels of Modelling	4
	1.2	Questions Concerning the Fundamental Mechanisms of Memory	4
		1.2.1 Where Do the Signals Relating to Memory Act Upon?	5
		1.2.2 What Kind of Encoding is Used for Neural Signals?	6
		1.2.3 What are the Variable Memory Elements?	7
		1.2.4 How are Neural Signals Addressed in Memory?	8
	1.3	Elementary Operations Implemented by Associative Memory	14
		1.3.1 Associative Recall	14
		1.3.2 Production of Sequences from the Associative Memory	16
		1.3.3 On the Meaning of Background and Context	20
	1.4	More Abstract Aspects of Memory	21
		1.4.1 The Problem of Infinite-State Memory	21
		1.4.2 Invariant Representations	22
		1.4.3 Symbolic Representations	24
		1.4.4 Virtual Images	25
		1.4.5 The Logic of Stored Knowledge	27
2.	Pat	tern Mathematics	30
	2.1	Mathematical Notations and Methods	30
		2.1.1 Vector Space Concepts	30
		2.1.2 Matrix Notations	41
		2.1.3 Further Properties of Matrices	44
		2.1.4 Matrix Equations	48
		2.1.5 Projection Operators	54
		2.1.6 On Matrix Differential Calculus	57
	2.2	Distance Measures for Patterns	59

		2.2.1 Measures of Similarity and Distance in Vector Spaces	59
		2.2.2 Measures of Similarity and Distance Between Symbol	
		Strings	63
3.	Cla	ssical Learning Systems	67
	3.1	The Adaptive Linear Element (Adaline)	68
		3.1.1 Description of Adaptation by the Stochastic	
		Approximation	70
	3.2	The Perceptron	71
	3.3	The Learning Matrix	73
	3.4	Physical Realization of Adaptive Weights	76
		3.4.1 Perceptron and Adaline	76
		3.4.2 Classical Conditioning	77
		3.4.3 Conjunction Learning Switches	79
		3.4.4 Digital Representation of Adaptive Circuits	79
		3.4.5 Biological Components	80
	3.5	Holographic Memories	80
		3.5.1 A Simple Principle of Holographic Associative Memory .	82
		3.5.2 Addressing in Holographic Memories	84
4.	AN	lew Approach to Adaptive Filters	90
	4.1	Survey of Some Necessary Functions	90
	4.2	On Physical and Biological Modelling	92
	4.3	Models for Basic Adaptive Units	95
		4.3.1 Formulation of the Transfer Function	95
		4.3.2 Various Cases of Adaptation Laws	97
		4.3.3 Two Limit Theorems	104
		4.3.4 The Novelty Detector	106
	4.4	Adaptive Feedback Networks	110
		4.4.1 The Autocorrelation Matrix Memory	111
		4.4.2 The Novelty Filter	115
5.	Self	-Organizing Feature Maps	125
	5.1	On the Feature Maps of the Brain	125
	5.2	Formation of Localized Responses by Lateral Feedback	128
	5.3	Computational Simplification of the Process	133
	'	5.3.1 Definition of the Topology-Preserving Mapping	133
		5.3.2 A Simple Two-Dimensional Self-Organizing System	136
	5.4	Demonstrations of Simple Topology-Preserving Mappings	139
		5.4.1 Images of Various Distributions of Input Vectors	139
		5.4.2 "The Magic TV"	143

;

		5.4.3 Mapping by a Feeler Mechanism	145
	5.5	Tonotopic Map	146
	5.6	Formation of Hierarchical Representations	147
		5.6.1 Taxonomy Example	147
		5.6.2 Phoneme Map	148
	5.7	Mathematical Treatment of Self-Organization	149
		5.7.1 Ordering of Weights	150
		5.7.2 Convergence Phase	156
		5.7.3 The Magnification Factor	159
	5.8	Automatic Selection of Feature Dimensions	160
6.	Opt	imal Associative Mappings	162
	6.1	Transfer Function of an Associative Network	163
	6.2	Autoassociative Recall as an Orthogonal Projection	164
		6.2.1 Orthogonal Projections	164
		6.2.2 Error-Correcting Properties of Projections	165
	6.3	The Novelty Filter	167
		6.3.1 Two Examples of Novelty Filter	167
		6.3.2 Novelty Filter as an Autoassociative Memory	169
	6.4	Autoassociative Encoding	169
		6.4.1 An Example of Autoassociative Encoding	170
	6.5	Optimal Associative Mappings	171
		6.5.1 The Optimal Linear Associative Mapping	172
		6.5.2 Optimal Nonlinear Associative Mappings	176
	6.6	Relationship Between Associative Mapping, Linear Regression,	
		and Linear Estimation	179
		6.6.1 Relationship of the Associative Mapping to Linear	
		Regression	179
		6.6.2 Relationship of the Regression Solution to the Linear	
		Estimator	180
	6.7	Recursive Computation of the Optimal Associative Mapping	181
		6.7.1 Linear Corrective Algorithms	182
		6.7.2 Best Exact Solution (Gradient Projection)	183
		6.7.3 Best Approximate Solution (Regression)	184
	<i>c</i> 0	6.7.4 Recursive Solution in the General Case	186
	6.8	Special Cases	18/
		0.8.1 The Correlation Matrix Memory	18/
		0.0.2 Relationship Between Conditional Averages and Optimal	100
			199
7.	Pat	tern Recognition	189
	7.1	Discriminant Functions	189

;

	7.2	Statistical Formulation of Pattern Classification	191
	7.3	Comparison Methods	194
	7.4	The Subspace Methods of Classification	196
		7.4.1 The Basic Subspace Method	196
		7.4.2 The Learning Subspace Method (LSM)	197
	7.5	Feature Extraction	203
	7.6	Clustering	203
		7.6.1 Simple Clustering (Optimization Approach)	204
		7.6.2 Hierarchical Clustering (Taxonomy Approach)	205
	7.7	Structural Pattern Recognition Methods	206
8.	Мо	re About Biological Memory	210
	8.1	Physiological Foundations of Memory	210
		8.1.1 On the Mechanisms of Memory in Biological Systems	210
		8.1.2 Structural Features of Some Neural Networks	213
		8.1.3 Functional Features of Neurons	218
		8.1.4 Modelling of the Synaptic Plasticity	222
		8.1.5 Can the Memory Capacity Ensue from Synaptic Changes?	227
	8.2	The Unified Cortical Memory Model	230
		8.2.1 The Laminar Network Organization	230
		8.2.2 On the Roles of Interneurons	232
		8.2.3 Representation of Knowledge Over Memory Fields	233
		8.2.4 Self-Controlled Operation of Memory	237
		8.2.5 A Note on the "Connectionistic" View	238
	8.3	Collateral Reading	239
		8.3.1 Physiological Results Relevant to Modelling	239
		8.3.2 Related Modelling	240
Bibliography on Pattern Recognition			241
Re	efere	nces	243
Subject Index			249