

Ville Särkimäki

RADIO FREQUENCY MEASUREMENT METHOD FOR DETECTING BEARING CURRENTS IN INDUCTION MOTORS

Thesis for the degree of Doctor of Science (Technology) to be presented with due permission for public examination and criticism in the Auditorium 1383 at Lappeenranta University of Technology, Lappeenranta, Finland on the 28th of May, 2009, at noon.

CONTENTS

ABSTRACT	3
ACKNOWLEDGEMENTS	5
CONTENTS	7
ABBREVIATIONS AND SYMBOLS	9
1 INTRODUCTION	13
1.1 Bearing currents in induction motors	14
1.2 Classical bearing currents	14
1.3 Bearing currents in inverter-driven motors	15
1.3.1 Small capacitive currents	18
1.3.2 EDM bearing currents	19
1.3.3 High-frequency circulating bearing currents	20
1.3.4 Rotor ground currents	21
1.4 Bearing damages caused by bearing currents	
1.5 Measurement of bearing currents	25
1.6 Bearing condition monitoring methods	
1.7 Mitigation of bearing currents	29
1.8 Motivation of the study	
1.10 Objectives of the study	
1.10 Scientific contributions of the thesis	
1.11 Outline of the thesis	
2 ELECTRIC DISCHARGES IN THE BEARINGS OF AN ELECTRIC MOTOR	
2.1 Introduction to a spark gap transmitter	
2.2 Electric motor as a spark gap transmitter	39
2.3 Energy released during a discharge inside a bearing	41
2.3.1 Bearing and parasitic capacitances of an electric motor	41
2.3.2 Shaft voltage caused by common-mode voltage	44
2.3.3 Energy stored in the bearing and parasitic capacitances	46
2.3.4 Radiated power from a discharge	47
2.4 Spectrum of a discharge	49
2.5 Electric motor as an antenna	
3 DETECTION OF DISCHARGES IN THE BEARINGS OF AN ELECTRIC MOTOR	R 57
3.1 Partial discharge detection in transformers	57
3.2 Propagation of radio waves	
3.3 Interference	59
3.3.1 Frequency converter as a source of interference	60
3.4 Signal analysis methods for discharge detection in the bearings of an electric mot	or 63
3.4.1 Interference mitigation with high-pass filtering	
3.4.2 Discharge detection using short-time Fourier transform	
3.4.3 Discharge activity calculation with envelope detection and pulse counting	
3.5 Locating the sources of discharges	
3.6 Suggestions for real-time discharge detection	
4 MEASUREMENTS AND ANALYSIS OF DISCHARGES IN THE BEARINGS OF	AN
ELECTRIC MOTOR	
4.1 Test system and measurement setups	
4.2 Challenges when measuring discharges	83

4.4.1 Measurements with the motor having insulated bearings	•••••
4.4.2 Measurements with the unmodified motor	•••••
4.5 Measurements of an induction motor as an antenna	•••••
5 SUMMARY AND CONCLUSIONS	
5.1 Key results of the work	
5.2 Usability of the results	
5.3 Suggestions for future work	
REFERENCES	
APPENDIX I	
APPENDIX II	

"

. . .