LINEAR PROGRAMMING AND NETWORK FLOWS

SECOND EDITION

MOKHTAR S. BAZARAA Senior Vice President Burnham Service Corporation

JOHN J. JARVIS
School of Industrial and Systems Engineering
Georgia Institute of Technology

HANIF D. SHERALI

Department of Industrial Engineering and

Operations Research

Virginia Polytechnic Institute and State University

TECHNISCHE HOCHSCHULE DARMSTADT
Fachbereich 1
Gesamtbibliothek
Betriebswirtschaftslehr e
Inventor-Nr.: 46.08/
Abstoll-Mr. : A 14/15/13
Sachgebiete:
1,6,5

CONTENTS

1.	INT	RODUCTION	1
	1.1	The Linear Programming Problem	2
	1.2	Linear Programming Modeling and Examples	7
	1.3	Geometric Solution	14
	1.4	The Requirement Space	19
	1.5	Notation	24
		Exercises	24
		Notes and References	37
2.	LINE	EAR ALGEBRA, CONVEX ANALYSIS, AND	
	POL	YHEDRAL SETS	38
	2.1	Vectors	38
	2.2	Matrices	44
	2.3	Simultaneous Linear Equations	53
		Convex Sets and Convex Functions	55
	2.5	Polyhedral Sets and Polyhedral Cones	. 61
	2.6	Extreme Points, Faces, Directions, and Extreme	
		Directions of Polyhedral Sets: Geometric Insights	63
	2.7	Representation of Polyhedral Sets	67
		Exercises	73
		Notes and References	80
3.	THE	SIMPLEX METHOD	81
	3.1	Extreme Points and Optimality	81
	3.2	Basic Feasible Solutions	84
	3.3	Key to the Simplex Method	92
	3.4	Geometric Motivation of the Simplex Method	94
	3.5	Algebra of the Simplex Method	97
	3.6	Termination: Optimality and Unboundedness	103
	3.7	The Simplex Method	108
	3.8	The Simplex Method in Tableau Format	113
	3.9	Block Pivoting	121
		Exercises	122
		Notes and References	135
4.	STA	137	
	4.1	The Initial Basic Feasible Solution	137
	4.2	The Two-Phase Method	141
	4.3	The Big-M Method	152
	4.4	Comparison of the Two-Phase and the Big-M	
		Methods: How Big Should Big-M Be?	161
	4.5	The Single Artificial Variable Technique	162
	4.6	·	164

	٠		
x	ı	ı	

CONTENTS

	4.7	Validation of the Two Cycling Prevention Rules	170
		Exercises Notes and References	1 <i>75</i> 18 <i>7</i>
		Troiss and rotoroness	107
5 .	_	CIAL SIMPLEX IMPLEMENTATIONS	3.00
		OPTIMALITY CONDITIONS	188
	5.1	The Revised Simplex Method	188
	5.2	The Simplex Method for Bounded Variables	206
	5.3	•	219
	5.4	The Karush – Kuhn – Tucker Optimality Conditions	221
		Exercises	227
		Notes and References	241
6.	DU	ALITY AND SENSITIVITY ANALYSIS	243
	6.1	Formulation of the Dual Problem	243
	6.2	Primal-Dual Relationships	249
	6.3	Economic Interpretation of the Dual	254
	6.4	The Dual Simplex Method	261
	6.5	The Primal-Dual Method	269
	6.6	Finding an Initial Dual Feasible Solution:	
		The Artificial Constraint Technique	276
	6.7	Sensitivity Analysis	278
	6.8	Parametric Analysis	294
		Exercises	301
		Notes and References	319
7.	THE	DECOMPOSITION PRINCIPLE	320
• •	7.1	The Decomposition Principle	321
	7.2	Numerical Example	326
	7.3	Getting Started	334
	7.4	•	335
	7.5		341
	7.6	Duality and Relationships with Other	
		Decomposition Procedures	350
		Exercises	355
		Notes and References	369
8.	CO	MPLEXITY OF THE SIMPLEX ALGORITHM	
٠.		D POLYNOMIAL ALGORITHMS	371
	8.1	Polynomial Complexity Issues	371
	8.2	Computational Complexity of the Simplex Algorithm	375
	8.3	Khachian's Ellipsoid Algorithm	379
	8.4	Karmarkar's Projective Algorithm	380
	·	ramana strojecii stragoriiiii	300

CONTENTS	iiix
----------	------

	8.5	Analysis of Karmarkar's Algorithm:	
		Convergence, Complexity, Sliding Objective Method,	
		and Basic Optimal Solutions	394
		Exercises	404
		Notes and References	416
			410
9 .		IMAL COST NETWORK FLOWS	419
	9.1	The Minimal Cost Network Flow Problem	420
	9.2	Some Basic Definitions and Terminology	40.
		from Graph Theory	421
	9.3	Properties of the A Matrix	425
	9.4	Representation of a Nonbasic Vector in Terms	400
		of the Basic Vectors	430
	9.5	The Simplex Method for Network Flow Problems	432
	9.6	An Example of the Network Simplex Method	440
	9.7	Finding an Initial Basic Feasible Solution	440
	9.8	Network Flows with Lower and Upper Bounds	443
	9.9	The Simplex Tableau Associated	
		with a Network Flow Problem	446
	9.10	List Structures for Implementing	
		the Network Simplex Algorithm	446
		Degeneracy, Cycling, and Stalling	452
	9.12	Generalized Network Problems	458
		Exercises	461
		Notes and References	475
10.	THE	TRANSPORTATION AND ASSIGNMENT PROBLEMS	477
	10.1	Definition of the Transportation Problem	478
	10.2	· · · · · · · · · · · · · · · · · · ·	481
	10.3	Representation of a Nonbasic Vector in Terms	
		of the Basic Vectors	484
	10.4	The Simplex Method for Transportation Problems	486
	10.5	Illustrative Examples and a Note on Degeneracy	492
	10.6	The Simplex Tableau Associated	
		with a Transportation Tableau	498
	10.7	The Assignment Problem: (Kuhn's)	
		Hungarian Algorithm	499
	10.8	Alternating Basis Algorithm	
		for Assignment Problems	508
	10.9	A Polynomial Successive Shortest Path	
		Approach for Assignment Problems	510
	10.1	O The Transshipment Problem	513
		Exercises	514
		Notes and References	526

11.	THE C	OUT-OF-KILTER ALGORITHM	528
	11.1	The Out-of-Kilter Formulation of a Minimal Cost	
		Network Flow Problem	528
	11.2	Strategy of the Out-of-Kilter Algorithm	534
	11.3	Summary of the Out-of-Kilter Algorithm	546
	11.4	An Example of the Out-of-Kilter Algorithm	547
	11.5	A Labeling Procedure for the Out-of-Kilter Algorithm	548
	11.6	Insight into Changes in Primal and Dual Function Values	550
		Exercises	552
		Notes and References	561
12.	MAXIMAL FLOW, SHORTEST PATH, MULTICOMMODITY FLOW, AND NETWORK		
	SYNTHESIS PROBLEMS		
	12.1	The Maximal Flow Problem	563
	12.2	The Shortest Path Problem	572
	12.3	Polynomial Shortest Path Algorithms for Networks	
		with Arbitrary Costs	584
	12.4	Multicommodity Flows	587
	12.5	Characterization of a Basis for the Multicommodity	
	,	Minimal Cost Flow Problem	596
	12.6	Synthesis of Multiterminal Flow Networks	601
		Exercises	609
		Notes and References	625
BIBL	IOGR <i>A</i>	APHY	626
INDI	ξX		673