Contents

Symbols, Indices, and Acronyms xxi

1 The History of Automobile Brakes 1
 1.1 Mechanically Operated Vehicle Brakes 1
 1.2 The Hydraulically Operated Four-Wheel Brake 2
 1.3 Brakes with Internal Amplification 4
 1.4 Multi-Circuit Braking Systems 4
 1.5 From Muscle Power to Full Power Brakes 5
 1.6 The Hydraulically Operated Disc Brake 7
 1.7 Electronic Brake Control Systems 8

2 Basic Elements of the Braking Process 10
 2.1 Braking as Driving Task 10
 2.2 Characteristics of the Braking Process 11
 2.3 Stopping Distance 12
 2.4 Braking Stability and Braking Force Distribution 14
 2.5 Reliability .. 16

3 Automotive Engineering Requirements 18
 3.1 Performance .. 18
 3.1.1 Braking Distance 18
 3.1.2 Stability .. 19
 3.1.3 Road Irregularities 20
 3.1.4 Dependence on Friction Value 21
 3.2 Vehicle Performance 22
 3.2.1 Stability .. 22
 3.2.2 Body Pitch 25
 3.3 Actuation/Control 27
 3.3.1 Responsiveness and Controllability 27
 3.3.2 Forces, Travels, Characteristics 28
 3.4 Package/Installation Situation 29
 3.4.1 Installation Sizes and Relations 29
 3.4.2 Masses ... 30
 3.5 Brake Boost Energy Supply 30
 3.6 Thermal Marginal Conditions 32
 3.7 Environmental Conditions 33
 3.8 Noises and Vibrations 33
 3.8.1 Vibrations 34
 3.8.2 Noises ... 35
 3.9 Crash Requirements 36
 3.10 Environmental Protection 37
 3.10.1 Brake Linings 37
 3.10.2 Corrosion Protection 37
 3.10.3 Brake Fluid 37
 3.11 Energy Recuperation 37

4 User-Related Requirements 39
 4.1 Introduction .. 39
 4.2 Braking Situation 39
 4.2.1 Information Reception 41
 4.2.2 Cognition (Information Processing in the Narrower Sense) 41
 4.2.3 Reaction 42
 4.2.4 Time Sequence of Information Processing in Braking Situations 42
 4.3 Braking Action .. 43
 4.3.1 Foot Movement 43
 4.3.2 Actuation of Brake Pedal 44
4.4 Ergonomic Brake Design
4.4.1 Geometry 44
4.4.2 Key Features of Brake Pedal 46
4.4.3 Alternative Concepts 46
4.4.4 Braking Assistants 47

5 Interaction Among the Road Surface, Tire, and Brake
5.1 Introduction 49
5.2 Transmission of Forces Between the Tire and the Road Surface 49
5.2.1 The Friction of Rubber 49
5.2.2 Interaction Between the Tire and the Road Surface 50
5.2.3 Buildup of Tire Forces 52
5.2.3.1 Braking Forces/Tangential Forces 52
5.2.3.2 Side Slip: Forces and Moments 53
5.3 Interaction Between Tire and Brake 54
5.3.1 Tire Models 55
5.3.2 Dynamic Tangential Force/Slip Characteristics of a Tire During Braking 55
5.3.3 Tangential Forces During Braking with ABS 57
5.3.4 Combined Tangential and Lateral Forces, Braking When Lateral Force Is Required 57
5.4 Integration of the Tire into the Overall Vehicle System 59
5.4.1 Product Optimization of the Tire and the ABS Controller Using the Example of Winter Tires 60
5.4.2 The Role of Skid Marks in Accident Reconstruction 61
5.5 Outlook 63

6 Design and Simulation of Automobile Brake Systems 65
6.1 Principles of the Brake Dynamics 65
6.1.1 Lines of Equal Deceleration 67
6.1.2 Lines of Constant Coefficient of Friction Between the Tire and the Road Surface 67
6.2 Principles of the Brake Calculation 67
6.2.1 Pedal Unit 68
6.2.2 Vacuum Booster with Master Cylinder 68
6.2.3 Brake 68
6.2.3.1 Disc Brake 69
6.2.3.2 Drum Brake 69
6.3 Brake System Design 70
6.3.1 Brake-Split Configuration 70
6.3.1.1 Front Axle/Rear Axle Configuration (II-Configuration) 70
6.3.1.2 Diagonal Configuration (X-Configuration) 70
6.3.1.3 Other Brake-Circuit Configurations (HI-, LL-, HH-Configuration) 71
6.3.2 Sizing Criteria for Brake Systems 71
6.3.2.1 Requirements of the Brake Dynamics 71
6.3.2.2 Requirements of the Actuation Unit and the Transmission Mechanism 71
6.3.2.3 Thermal Sizing Criteria 72
6.3.3 Design of Wheel Brakes 72
6.3.3.1 Brake Power 73
6.3.3.2 Thermal Design 73
6.3.3.3 Component Life/Wear 74
6.3.3.4 Comfort 75
6.3.3.5 Costs 76
6.3.3.6 Weight 76
6.3.4 Design of Brake Control Systems 76
6.3.4.1 Design Criteria for ABS Systems 78
6.3.4.2 Design Criteria for the Traction Control System 78
6.3.4.3 Design Criteria for the Electronic Stability Control 79
6.3.5 Design Criteria for Electrohydraulic Brake Systems 80
6.4 Simulation of Brake Systems
6.4.1 Brake System Design
6.4.2 Analysis of the Brake System Components Using the Finite Elements Method
6.4.3 Simulation of Brake-System Components
6.4.4 Overall System Simulation

7 Construction and Components of Passenger Car Braking Systems
7.1 Introduction
7.1.1 The Underlying Physics
7.1.2 Braking System Types
7.1.3 Construction of Braking Systems in Passenger Cars
7.1.3.1 Front-Rear Split
7.1.3.2 Diagonal Split ("X Split")
7.1.3.3 Other Hydraulic Brake Circuit Splits

7.2 Generation of the Braking Force
7.2.1 Disc Brakes
7.2.1.1 Fixed Calipers
7.2.1.2 Frame Calipers
7.2.1.3 Fist Caliper
7.2.1.4 FN Fist Caliper
7.2.1.5 FNR Fist Frame Caliper
7.2.1.6 Combined Fist Caliper
7.2.1.7 Brake Discs
7.2.1.8 Brake Linings

7.2.2 Drum Brakes
7.2.2.1 Simplex Drum Brake
7.2.2.2 Duplex Drum Brake
7.2.2.3 Duo-Servo Drum Brake

7.2.3 Electric Generator
7.2.3.1 Crankshaft Starter Alternator

7.3 Transfer and Modulation of Braking Energy
7.3.1 Mechanical-Hydraulic Modulation of Brake Pressure
7.3.2 Electrohydraulic Brake Pressure Modulation
7.3.2.1 Hydraulic-Electronic Control Unit (HCU)
7.3.2.2 Electronic Control Unit (ECU)
7.3.2.3 Electronic Control Functions
7.3.2.4 Sensors for Electronic Brake Control Systems

7.3.3 Transmission Elements
7.3.3.1 Brake Fluid
7.3.3.2 Brake Tubes and Hoses

7.4 Brake Actuation
7.4.1 Brake Booster
7.4.1.1 Vacuum Brake Boosters
7.4.1.2 Hydraulic Brake Boosters
7.4.2 Tandem Master Cylinder
7.4.2.1 Compensating Bore TMc
7.4.2.2 Central Valve TMc
7.4.2.3 Plunger TMc
7.4.2.4 Reservoir

7.5 Human-Machine Interface (HMI)
7.5.1 Service Brake HMI
7.5.2 Parking Brake HMI
7.5.3 Pedal Characteristics (Ergonomics)
7.5.3.1 Adjustable Pedals
7.5.3.2 Crash Compatibility

7.6 New and Future System Architectures
7.6.1 Electric Hydraulic Combi Brake EHC
8 Braking Systems and Braking Performance of Commercial Vehicles and Buses

8.1 Evaluation of a Braking System

8.1.1 Vehicle Stability When Braking

8.1.2 Distribution of the Braking Forces to the Axles

8.1.3 Brake Application in the Braking Force Distribution Diagram

8.1.4 Load-Sensitive Braking Force Distribution (ALB)

8.1.4.1 Braking Force Limiters

8.1.4.2 Braking Force Reducers

8.1.5 Influence of Engine Drag Torques, Inertia Masses and Braking Torques of Continuous Braking Systems

8.1.6 Determination of Brake Factor Fluctuations and Their Influence on the Braking Force Distribution

8.1.7 Brake Circuits and Brake Circuit Failure

8.2 Braking Systems for Medium and Heavy Commercial Vehicles

8.2.1 Structure of a Braking System

8.2.2 Wheel Brakes and Components

8.3 Continuous Braking Systems

8.3.1 Engine Braking Systems

8.3.2 Retarders

8.4 Conventional Braking- and Driving-Slip Control Systems

8.4.1 Antilock Braking Systems (ABS)

8.4.2 Traction Control

8.5 Electronic Braking Management (EBS)

8.5.1 Integration of Continuous Braking Systems

8.5.2 Vehicle Stability Control with Integrated Roll-Over Protection

8.5.3 Optimization of the Compatibility Between Tractor Vehicle and Semitrailer/Full Trailer

8.5.4 Braking Assistant

8.5.5 Hill Holder

8.5.6 Lining/Pad Wear Control

8.5.7 Distance Monitoring

8.5.8 Systems for Automatic Vehicle Guidance

8.6 System Integration and Electronic Networking

8.7 Concluding View on X-by-Wire Systems

9 Brakes for Commercial Vehicles

9.1 Types of Pneumatically Operated CV Brakes

9.1.1 Drum Brakes

9.1.2 Disc Brakes

9.2 Design and Operation of the Pneumatically Operated Floating Caliper Brake

9.2.1 Actuating System

9.2.1.1 Service Brake

9.2.1.2 Parking Brake and Secondary Braking System

9.2.2 Automatic Wear-Adjusting System

9.2.3 Adjustment Behavior

9.2.4 Significance of the Clearance

9.2.5 Interaction Brake/Wheel Hub

9.2.5.1 Forces Resulting at the Brake

9.2.5.2 Thermal Load of the Wheel Bearing

9.3 Performance and Service Life Behavior

9.3.1 Design Data

9.3.1.1 Durability

9.3.1.2 Long-Term Braking Performance

9.4 Friction Elements

9.4.1 Brake Pads

9.4.2 Brake Disc

9.4.2.1 Brake Disc Designs
10.2.3 Typical Braking Faults ... 204
10.2.3.1 Over-Braking of the Front Wheel ... 204
10.2.3.2 Locking of the Rear Wheel .. 204
10.2.4 Bicycle Braking Systems ... 204
10.2.4.1 Basic Demands for Bicycle Braking Systems 204
10.2.4.2 Rim Brakes ... 204
10.2.4.3 Hub Brakes ... 206
10.2.4.4 Disc Brakes ... 207

11 Overrun Braking Systems

11.1 Introduction .. 211
11.2 Construction and Function of the Braking System 211
11.2.1 Components .. 211
11.2.1.1 Overrun Coupling .. 211
11.2.1.2 Transmission System ... 214
11.2.1.3 Wheel Brakes ... 214
11.2.2 Functions .. 215
11.2.2.1 Service Brake, Forward Travel .. 215
11.2.2.2 Automatic Reversing System, Reverse Travel 215
11.2.2.3 Parking Brake ... 215
11.2.2.4 Breakaway Braking Function ... 217
11.3 Braking System Layout .. 217
11.3.1 Brake Compatibility Calculation as per Directive 71/320/EEC 217
11.3.2 Brake Force Utilization .. 217
11.3.3 ABS Compatibility ... 218
11.4 Maintenance and Care .. 218
11.4.1 Maintenance .. 219
11.4.2 Readjustment .. 219
11.5 New Developments ... 219

12 Brakes of Off-Road Vehicles

12.1 Historical Development of Brakes in Off-Road Vehicles 221
12.2 Survey of National and International Legal Specifications for
 Brake Systems .. 221
12.2.1 Transport Laws in the Federal Republic of Germany 221
12.2.2 Guidelines of the European Community (EC) 222
12.2.3 Regulations of the Economic Commission for Europe 222
12.2.4 Standards of the Society of Automotive Engineers 222
12.3 Technical Versions and Design .. 222
12.3.1 Drum Brake ... 223
12.3.2 Disc Brake ... 224
12.3.3 Multiple-Disc Brake (Wet Brake) ... 224
12.3.3.1 Design of a Multiple-Disc Brake ... 224
12.3.3.2 Calculation of the Brake Torque .. 224
12.3.3.3 Friction Characteristics ... 225
12.3.3.4 Power Loss and Efficiency .. 226
12.4 Brake Testing and Braking Effect .. 228
12.4.1 Laboratory Testing ... 228
12.4.1.1 Proof of Compliance with Legal Specifications 228
12.4.1.2 Durability and Wet Testing .. 228
12.4.2 Vehicle Testing .. 228
12.4.2.1 Cold Performance Test (Type 0) .. 228
12.4.2.2 Heat Fading Test .. 228
12.4.2.3 Comparison of the Standards .. 229
12.5 Prospects and Tendencies ... 230
12.5.1 Interaction Between Wheel Brake and Other Brake Systems in
 the Vehicle (Brake Management) .. 230
12.5.2 Environmental Protection Thanks to New Brake Concepts 231
17 Mechatronic Systems: A Short Introduction

17.1 From Mechanical to Mechatronic Systems ... 279
17.2 Mechanical Systems and Mechatronic Developments 279
17.3 Functions of Mechatronic Systems .. 281
 17.3.1 Basic Mechanical Design .. 281
 17.3.2 Distribution of Mechanical and Electronic Functions 281
 17.3.3 Operating Properties ... 281
 17.3.4 New Functions .. 281
 17.3.5 Other Developments ... 281
17.4 Integration Forms of Processes and Electronics 281
17.5 Design Procedures for Mechatronic Systems .. 281
17.6 Computer-Aided Design of Mechatronic Systems 281

18 Basics of Electrically Actuated Braking Systems for Passenger Cars 290

18.1 Introduction ... 290
18.2 Definition of Brake-by-Wire ... 290
18.3 Structure of Electrically Actuated Braking Systems 290
18.4 Design of the Actuation Device .. 290
 18.4.1 Control Element ... 290
 18.4.2 Basic Attributes ... 290
 18.4.3 Information Feedback ... 290
18.5 Electrohydraulic Braking Systems ... 290
 18.5.1 EHB Systems with Pressure Modulator and Pressure Accumulator ... 290
 18.5.2 EHB Systems with Electrohydraulic Converter 291
18.6 Electromechanical Braking System ... 291
 18.6.1 Electrically Actuated Vehicle Brake .. 291
 18.6.1.1 Components ... 291
 18.6.1.2 Modes of Operation: Interaction of the Components 291
 18.6.2 Energy Demand ... 291
 18.6.3 Operation of Electrically Actuated Wheel Brakes 291
 18.6.4 Braking System Design ... 291
 18.6.5 Failsafe Concept ... 291
18.7 Mechatronic Interventions in the Self-Reinforcement of the Brake 291
 18.7.1 Active Guidance of the Brake Pad .. 291
 18.7.2 Active Intervention in the Brake Factor Mechanism 291
18.8 Comparisons of the Concepts .. 291
18.9 Hybrid Electric Brake Systems .. 291
18.10 Perspectives ... 291

19 Electrohydraulically Actuated Brakes ... 313

19.1 Conflicts of Goals and Limitations of Conventional Brake Systems 313
19.2 Comparison of Operating Principles of Various Brake Systems 313
19.3 Characteristics of Electrohydraulically Actuated Brake Systems 313
19.4 System and Component Description ... 313
 19.4.1 Actuator Unit .. 313
 19.4.2 Hydraulic Unit ... 313
 19.4.3 Control Units and Sensors .. 313
19.5 Functional System Characteristics ... 313
 19.5.1 Pedal Feel ... 313
 19.5.2 Stopping Distance ... 313
20 The Electromechanically Actuated Brake

20.1 Objective

20.2 System Structure: Interaction of the Components

20.2.1 Actuation Unit

20.2.2 The Electromechanical Wheel Brake

20.2.2.1 Converter

20.2.2.2 Gearing Systems

20.2.2.3 Sensors

20.2.3 Control Concepts

20.2.4 Power Supply

20.2.5 Passive Safety Aspects

20.3 Electric Parking Brake (EPB) and Active Parking Brake (APB)

20.4 Electric Hydraulic Combi (EHC) Brake

20.5 Utilization of Self-Energizing Brakes

20.6 Electronically Actuated Wedge Brake

20.6.1 Summary

20.6.2 History

20.6.3 Principles

20.6.4 Embodiments

20.6.5 Control Theory

20.6.6 Selected Measurement Results

20.6.6.1 General Test Profile

20.6.6.2 Response Dynamics

20.6.6.3 Sinusoidal Excitation

20.6.7 Outlook

21 The Brake System in Driver Assistance Systems

21.1 Overview, Function, and Requirements of Driver Assistance Systems for Cars

21.1.1 Anti-lock Brake System (ABS)

21.1.2 Traction Control System (TCS)

21.1.3 Electronic Stability Control (ESC)

21.1.3.1 Vehicle Dynamics Controller

21.1.3.2 Brake Slip Controller

21.1.3.3 Drive Slip Controller

21.1.4 Electronic Brake Force Distribution (EBV)

21.1.5 Electronically Controlled Deceleration (ECD)

21.1.6 Hill Descent Control (HDC)

21.1.7 Brake Assistant (BA)

21.1.8 Active Trailer Stabilization

21.2 Function of the Brake System in Driver Assistance Systems

21.3 Requirements of the Brake System for Driver Assistance Systems

21.4 Brake System Designs for Driver Assistance Systems

21.5 Monitoring the Brake System for Driver Assistance Systems

21.6 Outlook and Perspective

22 The Brake in the Mechatronic Chassis

22.1 Introduction

22.2 Chassis Mechanics

22.2.1 Function Structure and Suspension Interfaces

22.2.2 Interaction Between Brakes and Suspension

22.2.3 Representation of Chassis Parameters

22.3 Limitations of Passive Chassis Systems

22.3.1 Constraints of Conventional Hydraulically Actuated Wheel Brakes

22.3.2 Dynamics

22.3.3 Braking Comfort

22.3.4 Conflict of Objectives Between Handling and Ride

22.4 Solution Potential Using Mechatronics

22.4.1 Opportunities Through Mechatronics

22.4.2 Mechatronics in the Brake System
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.4.3 Mechatronics in the Suspension</td>
<td>364</td>
</tr>
<tr>
<td>22.4.4 Interaction Between Steering System and Brake</td>
<td>367</td>
</tr>
<tr>
<td>22.4.5 Interaction Between Tires and Brakes</td>
<td>368</td>
</tr>
<tr>
<td>22.5 Outlook</td>
<td>370</td>
</tr>
<tr>
<td>23 Friction Linings</td>
<td>372</td>
</tr>
<tr>
<td>23.1 Introduction</td>
<td>372</td>
</tr>
<tr>
<td>23.2 Friction Lining Requirements</td>
<td>372</td>
</tr>
<tr>
<td>23.3 Material Concepts</td>
<td>373</td>
</tr>
<tr>
<td>23.3.1 Semimetallic Friction Linings</td>
<td>373</td>
</tr>
<tr>
<td>23.3.2 Low Steel Friction Materials</td>
<td>375</td>
</tr>
<tr>
<td>23.3.3 Non-Asbestos Organic Friction Linings</td>
<td>375</td>
</tr>
<tr>
<td>23.3.4 Nonmetallic Linings</td>
<td>375</td>
</tr>
<tr>
<td>23.3.5 Hybrid Linings</td>
<td>376</td>
</tr>
<tr>
<td>23.3.6 Friction Linings for Ceramic Discs</td>
<td>376</td>
</tr>
<tr>
<td>23.3.7 Underlayer</td>
<td>377</td>
</tr>
<tr>
<td>23.4 Ecology</td>
<td>378</td>
</tr>
<tr>
<td>23.5 Raw Materials and Their Characteristics in Friction Linings</td>
<td>380</td>
</tr>
<tr>
<td>23.6 Test Methods for Raw Materials</td>
<td>382</td>
</tr>
<tr>
<td>23.6.1 Analytical Equipment Test Methods</td>
<td>382</td>
</tr>
<tr>
<td>23.7 Manufacturing Procedures</td>
<td>384</td>
</tr>
<tr>
<td>23.8 Outlook</td>
<td>385</td>
</tr>
<tr>
<td>24 Function Mechanism and Properties of Friction Couplings in Brake Processes</td>
<td>387</td>
</tr>
<tr>
<td>24.1 Introduction</td>
<td>387</td>
</tr>
<tr>
<td>24.2 Test Devices, Characteristic Load Values, and Assessment Criteria</td>
<td>387</td>
</tr>
<tr>
<td>24.2.1 Test Methods, Testing Opportunities, and Measurement Systems</td>
<td>387</td>
</tr>
<tr>
<td>24.2.2 Characteristic Parameters of Load</td>
<td>389</td>
</tr>
<tr>
<td>24.2.3 Criteria for Assessment of Friction and Wear Properties</td>
<td>389</td>
</tr>
<tr>
<td>24.2.4 Friction Surface Temperature</td>
<td>391</td>
</tr>
<tr>
<td>24.3 Running-In Process</td>
<td>391</td>
</tr>
<tr>
<td>24.4 The Function Mechanism in the Contact Surface</td>
<td>392</td>
</tr>
<tr>
<td>24.5 Local Friction Lining Wear</td>
<td>393</td>
</tr>
<tr>
<td>24.6 Local Friction Coefficients</td>
<td>394</td>
</tr>
<tr>
<td>24.7 Explanation of the Function Mechanism in the Contact Surface</td>
<td>395</td>
</tr>
<tr>
<td>24.8 Parameters that Influence Friction and Wear Properties</td>
<td>395</td>
</tr>
<tr>
<td>25 Mechanical Brakes in Stationary Industrial Plants</td>
<td>399</td>
</tr>
<tr>
<td>25.1 Introduction</td>
<td>399</td>
</tr>
<tr>
<td>25.2 Industrial Brakes</td>
<td>399</td>
</tr>
<tr>
<td>25.2.1 Preferred Types of Mechanical Brakes</td>
<td>399</td>
</tr>
<tr>
<td>25.2.2 The Interaction of Energy Between Drive Gear and Brake</td>
<td>401</td>
</tr>
<tr>
<td>25.2.3 Friction and Wear Properties of the Friction Couples</td>
<td>402</td>
</tr>
<tr>
<td>25.2.4 Dimensioning of Friction Couples for Industrial Brakes</td>
<td>405</td>
</tr>
<tr>
<td>25.3 Friction Disc Brakes</td>
<td>407</td>
</tr>
<tr>
<td>26 Vibration and Noise</td>
<td>410</td>
</tr>
<tr>
<td>26.1 Definition</td>
<td>410</td>
</tr>
<tr>
<td>26.2 Forms of Vibration and Noise</td>
<td>410</td>
</tr>
<tr>
<td>26.2.1 Low-Frequency Vibrations and Noise</td>
<td>410</td>
</tr>
<tr>
<td>26.2.2 High-Frequency Noises</td>
<td>410</td>
</tr>
<tr>
<td>26.3 Sources of Excitation</td>
<td>410</td>
</tr>
<tr>
<td>26.3.1 Causes of Low-Frequency Noises and Vibrations</td>
<td>410</td>
</tr>
<tr>
<td>26.3.2 Causes of High-Frequency Noise</td>
<td>412</td>
</tr>
<tr>
<td>26.4 Effects</td>
<td>412</td>
</tr>
<tr>
<td>26.4.1 Vibrations</td>
<td>412</td>
</tr>
<tr>
<td>26.4.2 Acoustic Effects</td>
<td>412</td>
</tr>
<tr>
<td>26.5 Test and Evaluation Methods</td>
<td>412</td>
</tr>
<tr>
<td>26.5.1 Simulation</td>
<td>412</td>
</tr>
</tbody>
</table>
26.5.2 Test Setup Investigations .. 413
26.5.3 Road Tests ... 414
26.6 Measures to Reduce or Avoid Vibrations and Noise 414
 26.6.1 Measures at the Excitation Sources 414
 26.6.2 Measures at the Transfer System 415
 26.6.3 Secondary Measures ... 415
26.7 Outlook and Prospects .. 416

27 Brakes with Nonmetallic Brake Discs 417
 27.1 Introduction .. 417
 27.1.1 History .. 417
 27.1.2 Carbon Brake Discs ... 417
 27.2 Material .. 417
 27.2.1 Definition, Properties, Applications 417
 27.2.2 Manufacture of a Carbon-Ceramic Brake Disc 417
 27.2.2.1 Manufacturing Process 417
 27.2.3 Quality Assurance .. 419
 27.2.3.1 Tests During Manufacture 419
 27.2.3.2 Random Sample Tests 419
 27.3 Application ... 419
 27.3.1 Design of Ceramic Brakes 419
 27.3.1.1 Dimensioning of the Brake System 419
 27.3.1.2 Brake Disc Ring ... 419
 27.3.1.3 Brake Disc Chamber 420
 27.3.1.4 Brake Linings ... 421
 27.3.2 Influence of Ceramic Brakes on Vehicle Properties 421
 27.3.2.1 Influence on Braking Performance 421
 27.3.2.2 Influence on Driving Performances, Driving Properties,
 and Comfort .. 421
 27.3.3 Wear Behavior .. 421
 27.3.3.1 Abrasive Wear .. 421
 27.3.3.2 Cracking Due to Thermal Stresses 422
 27.3.3.3 Thermal Wear (Fiber Erosion) 422
 27.3.3.4 Wear Assessment 422
 27.4 Further Development of the Carbon-Ceramic Brake Disc Technology 422

28 Brake Fluid .. 424
 28.1 Brake Fluid Types ... 424
 28.1.1 Glycol-, Glycol Ether-, and Borate Ester-Based Brake Fluids 424
 28.1.2 Silicone Ester-Based Brake Fluids 424
 28.1.3 Mineral Oil-Based Brake Fluids 425
 28.2 National and International Standards 425
 28.3 Brake Fluid Properties ... 425
 28.3.1 Vehicle-Specific Suitability 425
 28.3.2 Compatibility with Other Brake Fluids 426
 28.3.3 Physical Properties ... 426
 28.4 Brake Fluid Handling and Storage 427
 28.4.1 Handling ... 427
 28.4.2 Storage ... 427
 28.4.3 Disposal .. 428

29 Brake Testing .. 429
 29.1 Wheel Brake .. 429
 29.1.1 Laboratory Tests .. 429
 29.1.1.1 Functional Behavior 429
 29.1.1.2 Tightness .. 430
 29.1.1.3 Strength .. 430
 29.1.1.4 Vibration ... 431
 29.1.1.5 Corrosion .. 431
Contents

29.1 Dynamometer Tests
- 29.1.2.1 Brake Dynamometers .. 432
- 29.1.2.2 Strength and Brake Disc Testing 438
- 29.1.2.3 Function of the Wheel Brake 439
- 29.1.2.4 Performance .. 439
- 29.1.2.5 Comfort ... 440

29.1.3 Road Tests
- 29.1.3.1 Static/Dynamic Basic Measurements 442
- 29.1.3.2 Brake Lining Coefficient of Friction Tests 443
- 29.1.3.3 Performance Tests ... 443
- 29.1.3.4 Comfort Tests .. 444
- 29.1.3.5 Endurance Tests .. 444
- 29.1.3.6 Statutory Requirements ... 445

29.2 Electronic Brake Systems (EBS)
- 29.2.1 Laboratory Tests .. 445
 - 29.2.1.1 Environmental Simulations ... 446
 - 29.2.1.2 Resistance to Media .. 446
 - 29.2.1.3 Testing in Corrosive Gas Atmospheres 446
 - 29.2.1.4 Corrosion Tests ... 446
- 29.2.2 Dynamometer Tests .. 447
 - 29.2.2.1 Functional Developments on the Overall System Test Rig 447
 - 29.2.2.2 Endurance Testing of the Overall EBS System 447
 - 29.2.2.3 Vibration Resistance ... 449

30 Safety and Reliability of Brake Systems
- 30.1 Brakes as Sources of Trouble .. 455
 - 30.1.1 Safety Considerations on Conventional Braking Devices 455
 - 30.1.2 Safety Considerations for Braking Systems Incorporating Newer Technologies ... 456
 - 30.1.2.1 System Reliability .. 457
 - 30.1.2.2 System Availability ... 458
 - 30.1.2.3 Requirements Pertaining to Electronic Safety Systems .. 458
- 30.2 Lean Testing in Automotive Industry 460
 - 30.2.1 Support in the Design and Development Phase 460
 - 30.2.2 Homologation ... 460
 - 30.2.3 Field Experience .. 460
- 30.3 Developing the Basic Principles of Testing and Inspection 461
 - 30.3.1 Continuous Improvement of the Main Roadworthiness Inspection ... 461
 - 30.3.2 Future Homologation .. 463

31 Legislation and Testing Procedures
- 31.1 Homologation Procedure in Europe and the United States 465
- 31.2 Development Processes of Regulations in Europe and the United States ... 466
 - 31.2.1 Development Process for Regulations in the EU 466
 - 31.2.2 Development Process for Regulations at the UN ECE 466
 - 31.2.3 Development Process for Regulations in the United States 467
- 31.3 European Regulations for Road Vehicles 467
 - 31.3.1 General Regulations, ECE Regulation 13, and EU Directive 71/320/EEC ... 467
 - 31.3.2 Performance Regulations ... 469
 - 31.3.3 The Distribution of Braking Forces and Compatibility Between Tractor and Trailer ... 471
 - 31.3.4 Regulations for ABS Systems 472
 - 31.3.5 Regulations for Complex Electronic Systems 473
 - 31.3.6 Testing Aftermarket Friction Linings 473
- 31.4 United States Braking Regulations 473
 - 31.4.1 FMVSS 105—Hydraulic Braking Systems 473
 - 31.4.2 FMVSS 121—Pneumatic Braking Systems 473
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31.4.3 FMVSS 106—Brake Hose Assemblies</td>
<td>473</td>
</tr>
<tr>
<td>31.4.4 FMVSS 116—Brake Fluids for Motor Vehicles</td>
<td>474</td>
</tr>
<tr>
<td>31.5 Worldwide Harmonization</td>
<td>474</td>
</tr>
<tr>
<td>31.5.1 FMVSS 135 and ECE R.13H</td>
<td>474</td>
</tr>
<tr>
<td>31.5.2 Harmonization: A Look into the Future</td>
<td>474</td>
</tr>
<tr>
<td>32 Maintenance and Diagnosis of Brake Systems</td>
<td>476</td>
</tr>
<tr>
<td>32.1 Influence of Standards, Regulations, and Laws in Practice</td>
<td>476</td>
</tr>
<tr>
<td>32.2 Brake Diagnosis</td>
<td>477</td>
</tr>
<tr>
<td>32.2.1 Noise and Vibrations</td>
<td>477</td>
</tr>
<tr>
<td>32.2.2 Pedal Box</td>
<td>477</td>
</tr>
<tr>
<td>32.2.3 Booster</td>
<td>478</td>
</tr>
<tr>
<td>32.2.4 Master Cylinder</td>
<td>478</td>
</tr>
<tr>
<td>32.2.5 Supply Pipes and Brake Hoses</td>
<td>479</td>
</tr>
<tr>
<td>32.2.6 Brakes</td>
<td>479</td>
</tr>
<tr>
<td>32.2.6.1 Disc Brakes</td>
<td>479</td>
</tr>
<tr>
<td>32.2.6.2 Drum Brakes</td>
<td>481</td>
</tr>
<tr>
<td>32.2.7 Pressure Control Devices</td>
<td>482</td>
</tr>
<tr>
<td>32.2.8 Brake Fluid</td>
<td>482</td>
</tr>
<tr>
<td>32.2.9 ABS, BA, EHB, VSC, and Other Components and Their Inspection</td>
<td>483</td>
</tr>
<tr>
<td>32.3 Environment, Repair, and Maintenance at Fair Market Value</td>
<td>483</td>
</tr>
<tr>
<td>32.4 Test Devices</td>
<td>483</td>
</tr>
<tr>
<td>33 Development Trends and Future Aspects</td>
<td>485</td>
</tr>
<tr>
<td>33.1 Social and Economic Trends</td>
<td>485</td>
</tr>
<tr>
<td>33.2 The Driver's Task—Today and Tomorrow</td>
<td>485</td>
</tr>
<tr>
<td>33.3 Quantum Leaps in New Technology</td>
<td>487</td>
</tr>
<tr>
<td>33.4 Limits of Power-Assisted Systems—Potential of By-Wire Systems</td>
<td>487</td>
</tr>
<tr>
<td>33.5 The Human-Machine Interface</td>
<td>488</td>
</tr>
<tr>
<td>33.6 Examples of By-Wire Technologies and Assistance Systems in the Chassis Sector</td>
<td>488</td>
</tr>
<tr>
<td>33.6.1 Throttle-by-Wire (E-Gas)</td>
<td>488</td>
</tr>
<tr>
<td>33.6.2 Shift-by-Wire</td>
<td>490</td>
</tr>
<tr>
<td>33.6.3 Steer-by-Wire</td>
<td>491</td>
</tr>
<tr>
<td>33.6.4 Brake-by-Wire (EHB and EMB)</td>
<td>491</td>
</tr>
<tr>
<td>33.6.5 Energy Management in the Car of the Future: The 42-Volt Onboard Network</td>
<td>492</td>
</tr>
<tr>
<td>33.7 Global Chassis Control with Networked Assistance and Chassis Systems</td>
<td>493</td>
</tr>
<tr>
<td>33.7.1 ESC II—Networking with Externally Controlled Lead Steering</td>
<td>493</td>
</tr>
<tr>
<td>33.7.2 Electronic Air Suspension; Damper and Stabilizer Adjustment</td>
<td>494</td>
</tr>
<tr>
<td>33.7.3 Technical and Economic Necessities</td>
<td>495</td>
</tr>
<tr>
<td>33.7.4 APIA—The All-Encompassing Approach to Safety</td>
<td>496</td>
</tr>
<tr>
<td>33.7.5 The Long-Term Goal of Accident Prevention</td>
<td>496</td>
</tr>
</tbody>
</table>

Chapters, Contributions, and Authors

Author Index

Index of Companies and Universities

Illustration Credits

About the Editors

Index

Color Section