DESIGN PROPOSAL FOR HIGH STRENGTH CONCRETE SECTIONS SUBJECTED TO FLEXURAL AND AXIAL LOADS

NICHOLAUS HOLKMANN OLSEN

CONTENT

PAGE	

PREI	FACE	• • • • • • • • • • • • • • • • • • • •	i
ABSI	FRACT		ii
RESU	JME .		vii
LIST	F OF S	TABLES	xiv
LIST	r of I	FIGURES	xvi
NOT	ATION	s	xxv
1.	INTR	DUCTION	1
	1.1	Purpose of this investigation	3
	1.2	Format	3
2.	UNIA	XIAL STRESS-STRAIN CURVES	4
	2.1	Introduction	4
	2.2	Establishing the Stress-Strain Curves	4
	2.3	Mathematical Representation of	
		the Stress-Strain Curves	6
3.	NONL	INEAR MODEL FOR CROSS-SECTIONAL ANALYSIS	10
	3.1	Introduction	10
	3.2	Assumptions in the Nonlinear Model	10
	3.3	Technique of Analysis	13
4.	DESI	GN PROPOSAL	18
	4.1	Introduction	18
	4.2	Ultimate Moment Capacity	18
	4.3	Ultimate Capacity of Combined Bending	
		and Axial Load	19

PAGE

5.	DS 411 AND THE DESIGN PROPOSAL COMPARED			
	TO THE NONLINEAR MODEL	21		
	5.1 Introduction	21		
	5.2 Ultimate Moment Capacity without			
	Compression Reinforcement	21		
	5.3 Ultimate Moment Capacity with			
	Compression Reinforcement	23		
	5.4 Ultimate Capacity of Combined Bending			
	and Axial Load	24		
6.	DUCTILITY INDEX AND ULTIMATE PLASTIC ROTATION			
	6.1 Introduction	27		
	6.2 Definitions	27		
	6.3 Ductility	29		
	6.4 Ultimate Plastic Rotation	31		
7.	CONCLUSION	33		
8.	REFERENCES	36		
0	MADI PC	40		
3.	1AD120	40		
10	FIGURES	49		