TABLE OF CONTENTS

PART I. INTRODUCTION ... 1

CHAPTER 1. BASIC MEMBRANE STRUCTURE AND ELECTRICAL PROPERTIES 5
 A. Some Simple Concepts About Membrane Structure 5
 B. The General Nature of Membrane Electrical Properties 7

CHAPTER 2. PASSIVE ELECTRICAL PROPERTIES OF AXONS 12
 A. Non-Myelinated Fibres ... 12
 B. Myelinated Fibres .. 18

CHAPTER 3. OVERVIEW OF THE GROSS PROPERTIES OF EXCITABLE CELLS 27
 A. The Membrane Theory of Excitation and Propagation 27
 B. Strength-Duration Relation, Accommodation 30
 C. Refractory States and Firing Frequency 34
 D. Axonal Characteristics and Action Potential Propagation 35

CHAPTER 4. THE HODGKIN-HUXLEY AXON 42
 A. Voltage Clamping ... 42
 B. Ionic Current Flow as Revealed by the Voltage Clamp 44
 C. Empirical Formulae for the Conductances 49
 D. Reconstruction of the Action Potential 50

CHAPTER 5. CURRENT LEVELS OF KNOWLEDGE ABOUT THE EARLY AND LATE CURRENT FLOW PATHWAYS 51
 A. The Action of Tetrodotoxin (TTX) 51
 B. The Action of Tetraethylammonium Ion (TEA) 54
 C. Ionic Strength Effects on the Kinetic Parameters of Excitation 54
 D. The Effect of Calcium on the Membrane 56
 E. The Effects of pH Changes ... 57
 F. Cation Selective Properties of the Membrane at Rest and During Excitation 57
 G. Kinetic Behaviour in the K Channel 59
 H. High Potassium Effects on the K Channel Current-Voltage Curve 59
 I. The Nature of the Leakage Pathway 60

PART II. CLASSICAL ELECTRODIFFUSION THEORIES OF MEMBRANE ELECTRICAL PROPERTIES 63

CHAPTER 6. CONSERVATION AND FIELD EQUATIONS 65
CHAPTER 12. RELATIONSHIP BETWEEN THE MICROSCOPIC AND MACROSCOPIC FORMULATIONS OF ELECTRODIFFUSION THEORY
 A. Conservation Equations ... 161
 B. Relation to Electrodiffusion 164

CHAPTER 13. THE MICROSCOPIC MODEL IN A STEADY STATE: NO CONCENTRATION GRADIENTS
 A. Spatial Gradients in a Steady State 168
 B. Solutions of the Kinetic Equations For a DC Field 169
 C. Analytic Behaviour of the Current Density as a Function of Electric Field Strength 171
 D. Computed Behaviour of $\mathcal{T}(E)$ and $G_c(E)$ 174
 E. Estimation of Some Membrane Related Quantities 193

CHAPTER 14. THE STEADY STATE MICROSCOPIC MODEL WITH SOLUTION ASYMMETRY
 A. Solution of the Kinetic Equations 199
 B. A Generalized Goldman Equation 201
 C. Computed Properties of the Model 204
 D. One Way Fluxes and the Independence Principle 209

CHAPTER 15. STEADY STATE AND DYNAMIC PROPERTIES OF THE MACROSCOPIC MODEL 217

REFERENCES ... 229

APPENDIX 1 ... 239

APPENDIX 2 ... 240