GAS TURBINE HEAT TRANSFER AND COOLING TECHNOLOGY

Je-Chin Han, Sc.D.

HTRI Professor, Texas A&M University, Department of Mechanical Engineering, College Station, Texas

Sandip Dutta, Ph.D.

Assistant Professor, University of South Carolina, Department of Mechanical Engineering, Columbia, South Carolina

Srinath Ekkad, Ph.D.

Assistant Professor, Louisiana State University, Department of Mechanical Engineering, Baton Rouge, Louisiana

010

Taylor & Francis is an imprint of the Taylor & Francis Group, an **informa** business

Contents

	Pre	face	xv
Curr	1		
	TER I		
FUI	NDAM	ENTALS	1
1.1	NEED	FOR TURBINE BLADE COOLING	1
	1.1.1	Recent Development in Aircraft Engines	1
	1.1.2	Recent Development in Land-Based Gas Turbines	4
1.2	TURB	INE-COOLING TECHNOLOGY	5
	1.2.1	Concept of Turbine Blade Cooling	5
	1.2.2	Typical Turbine Cooling System	7
1.3	TURB	INE HEAT-TRANSFER AND COOLING ISSUES	13
	1.3.1	Turbine Blade Heat Transfer	13
	1.3.2	Turbine Blade Internal Cooling	17
	1.3.3	Turbine Blade Film Cooling	21
	1.3.4	Thermal Barrier Coating and Heat Transfer	21
1.4	STRUG	CTURE OF THE BOOK	22
1.5	REVIE	W ARTICLES AND BOOK CHAPTERS ON TURBINE	
	COOL	ING AND HEAT TRANSFER	23
Снар	ter 2		
TUF	BINE	HEAT TRANSFER	27
2.1	INTRO	DUCTION	27
	2.1.1	Combustor Outlet Velocity and Temperature Profiles	27
2.2	TURB	NE-STAGE HEAT TRANSFER	31
	2.2.1	Introduction	31
	2.2.2	Real Engine Turbine Stage	32
	2.2.3	Simulated Turbine Stage	38
	2.2.4	Time-Resolved Heat-Transfer Measurements	50
	2.2.1	on a Rotor Blade	44
			1.1

•

CONTENTS

2.3	CASCA	DE VANE HEAT-TRANSFER EXPERIMENTS	47
	2.3.1	Introduction	47
	2.3.2	Effect of Exit Mach Number and Reynolds Number	48
	2.3.3	Effect of Free-Stream Turbulence	52
	2.3.4	Effect of Surface Roughness	54
	2.3.5	Annular Cascade Vane Heat Transfer	57
2.4	CASCA	ADE BLADE HEAT TRANSFER	60
	2.4.1	Introduction	60
	2.4.2	Unsteady Wake-Simulation Experiments	62
	2.4.3	Wake-Affected Heat-Transfer Predictions	69
	2.4.4	Combined Effects of Unsteady-Wake and	
		Free-Stream Turbulence	73
2.5	AIRFO	DIL ENDWALL HEAT TRANSFER	77
	2.5.1	Introduction	77
	2.5.2	Description of the Flow Field	77
	2.5.3	Endwall Heat Transfer	79
	2.5.4	Near-Endwall Heat Transfer	83
	2.5.5	Engine Condition Experiments	83
	2.5.6	Effect of Surface Roughness	85
2.6	TURB	INE ROTOR BLADE TIP HEAT TRANSFER	88
	2.6.1	Introduction	88
	2.6.2	Blade Tip Region Flow Field and Heat Transfer	88
	2.6.3	Flat-Blade Tip Heat Transfer	92
	2.6.4	Squealer- or Grooved-Blade Tip Heat Transfer	93
2.7	LEAD	ING-EDGE REGION HEAT TRANSFER	100
	2.7.1	Introduction	100
	2.7.2	Effect of Free-Stream Turbulence	101
	2.7.3	Effect of Leading-Edge Shape	106
	2.7.4	Effect of Unsteady Wake	107
2.8	, FLAT-	SURFACE HEAT TRANSFER	110
/	2.8.1	Introduction	110
	2.8.2	Effect of Free-Stream Turbulence	111
	2.8.3	Effect of Pressure Gradient	115
	2.8.4	Effect of Streamwise Curvature	116
	2.8.5	Surface Roughness Effects	117
2.9	CLOS	URE	119

vi

1

Снар	ter 3		
TUF	RBINE	FILM COOLING	129
3.1	INTRO	DUCTION	129
	3.1.1	Fundamentals of Film Cooling	129
3.2	FILM	COOLING ON ROTATING TURBINE BLADES	133
3.3	FILM (COOLING ON CASCADE VANE SIMULATIONS	140
	3.3.1	Introduction	140
	3.3.2	Effect of Film Cooling	140
	3.3.3	Effect of Free-Stream Turbulence	150
3.4	FILM (COOLING ON CASCADE BLADE SIMULATIONS	151
	3.4.1	Introduction	151
	3.4.2	Effect of Film Cooling	151
	3.4.3	Effect of Free-Stream Turbulence	154
	3.4.4	Effect of Unsteady Wake	156
	3.4.5	Combined Effect of Free-Stream Turbulence	
		and Unsteady Wakes	162
3.5	FILM	COOLING ON AIRFOIL ENDWALLS	162
	3.5.1	Introduction	162
	3.5.2	Low-Speed Simulation Experiments	162
	3.5.3	Engine Condition Experiments	169
	3.5.4	Near-Endwall Film Cooling	171
3.6	TURB	INE BLADE TIP FILM COOLING	173
	3.6.1	Introduction	173
	3.6.2	Heat-Transfer Coefficient	175
	3.6.3	Film Effectiveness	175
3.7	LEAD	ING-EDGE REGION FILM COOLING	179
	3.7.1	Introduction	179
	3.7.2	Effect of Coolant-to-Mainstream Blowing Ratio	180
	3.7.3	Effect of Free-Stream Turbulence	183
	3.7.4	Effect of Unsteady Wake	186
	3.7.5	Effect of Coolant-to-Mainstream Density Ratio	186
	3.7.6	⁰ Effect of Film Hole Geometry	192
	3.7.7	Éffect of Leading-Edge Shape	193
3.8	FLAT-	SURFACE FILM COOLING	194
	3.8.1	Introduction	194
	3.8.2	Film-Cooled, Heat-Transfer Coefficient	195

•

		3.8.2.1	Effect of Blowing Ratio	196
		3.8.2.2	Effect of Coolant-to-Mainstream	
			Density Ratio	197
		3.8.2.3	Effect of Mainstream Acceleration	198
		3.8.2.4	Effect of Hole Geometry	201
	3.8.3	Film-Coc	ling Effectiveness	206
		3.8.3.1	Effect of Blowing Ratio	208
		3.8.3.2	Effect of Coolant-to-Mainstream	
			Density Ratio	209
		3.8.3.3	Film Effectiveness Correlations	210
		3.8.3.4	Effect of Streamwise Curvature	
			and Pressure Gradient	215
		3.8.3.5	Effect of High Free-Stream Turbulence	220
		3.8.3.6	Effect of Film Hole Geometry	223
		3.8.3.7	Effect of Coolant Supply Geometry	225
		3.8.3.8	Effect of Surface Roughness	228
		3.8.3.9	Effect of Gap Leakage	230
		3.8.3.10	Effect of Bulk Flow Pulsations	234
		3.8.3.11	Full-Coverage Film Cooling	235
3.9	DISCH	IARGE CO	EFFICIENTS OF TURBINE	
	COOL	ING HOLE	2S	235
3.10	FILM-	COOLING	EFFECTS ON AERODYNAMIC LOSSES	239
3.11	CLOSURE			243
Снарт	er 4			
TUR	BINE I	NTERNA	L COOLING	251
4.1	JET IN	IPINGEME	NT COOLING	251
	4.1.1	Introduci	tion	251
	4.1.2	Heat-Trai	nsfer Enhancement by a Single Jet	25
		4.1.2.1	Effect of Jet-to-Target-Plate Spacing	25 [,]
11		4.1.2.2	Correlation for Single Jet	
			Impingement Heat Transfer	25
		4.1.2.3	Effectiveness of Impinging Jets	25
		4.1.2.4	Comparison of Circular to Slot Jets	25
	4.1.3	Impinger	nent Heat Transfer in the Midchord	
		Region b	y Jet Array	2!

Region by Jet Array

1

viii

		4.1.3.1	Jets with Large Jet-to-Jet Spacing	259
		4.1.3.2	Effect of Wall-to-Jet-Array Spacing	260
		4.1.3.3	Cross-Flow Effect and	
			Heat-Transfer Correlation	260
		4.1.3.4	Effect of Initial Cross-Flow	266
		4.1.3.5	Effect of Cross-Flow Direction on	
			Impingement Heat Transfer	267
		4.1.3.6	Effect of Coolant Extraction on	
			Impingement Heat Transfer	270
		4.1.3.7	Effect of Inclined Jets on Heat Transfer	276
	4.1.4	Impinge	ment Cooling of the Leading Edge	278
		4.1.4.1	Impingement on a Curved Surface	278
		4.1.4.2	Impingement Heat Transfer in the	
			Leading Edge	279
4.2	RIB-TU	RBULATE	D COOLING	287
	4.2.1	Introduc	tion	287
		4.2.1.1	Typical Test Facility	290
	4.2.2	Effects c	of Rib Layouts and Flow Parameters	
		on Ribbe	ed-Channel Heat Transfer	291
		4.2.2.1	Effect of Rib Spacing on the	
			Ribbed and Adjacent Smooth Sidewalls	291
		4.2.2.2	Angled Ribs	292
		4.2.2.3	Effect of Channel Aspect Ratio	
			with Angled Ribs	295
		4.2.2.4	Comparison of Different Angled Ribs	296
	4.2.3	Heat-Tra	Insfer Coefficient and Friction	
		Factor C	orrelation	297
	4.2.4	High-Pei	formance Ribs	301
		4.2.4.1	V-Shaped Rib	301
		4.2.4.2	V-Shaped Broken Rib	304
		4.2.4.3	Wedge- and Delta-Shaped Rib	306
	4.2.5	, Effect of	Surface-Heating Condition	309
	4.2.6	Nonrect	angular Cross Section Channels	313
	4.2.7	Effect of	f High-Blockage-Rațio Ribs	325
	4.2.8	Effect of	f Rib Profile	327
	4.2.9	Effect of	f Number of Ribbed Walls	333
	4.2.10	Effect of	f a 180° Sharp Turn	343

.

	4.2.11	Detailed Heat-Transfer Coefficient	~~~
		Measurements in a Ridded Channel	355
	4.2.12	Effect of Film-Cooling Hole on Bibbed-Channel Heat Transfer	366
13	DIN. FIN		371
4.J	A 3 1	Introduction	371
	4.3.7	Flow and Heat-Transfer Analysis with Single Pin	373
	4.3.2 1.3.3	Pin Array and Correlation	377
	4.J.J 131	Effect of Pin Shape on Heat Transfer	385
	435	Effect of Nonuniform Array and Flow Convergence	300
	436	Effect of Skewed Pin Array	391
	437	Partial Pin Arrangements	395
	4.3.8	Effect of Turning Flow	398
	439	Pin-Fin Cooling with Fiection	399
	4 3 10	Effect of Missing Pin on Heat-Transfer Coefficient	404
44	COMPO	UND AND NEW COOLING TECHNIQUES	406
1.1	4 4 1	Introduction	406
	442	Impingement on Ribbed Walls	406
	443	Impingement on Pinned and Dimpled Walls	411
	444	Combined Effect of Ribbed Wall with Grooves	414
1	445	Combined Effect of Ribbed Wall with Pins	
	1.1.0	and Impingement Inlet Conditions	420
	4.4.6	Combined Effect of Swirl Flow and Ribs	421
	4.4.7	Impingement Heat Transfer with Perforated Baffles	425
	4.4.8	Combined Effect of Swirl and Impingement	431
	4.4.9	Concept of Heat Pipe for Turbine Cooling	432
	4.4.10	New Cooling Concepts	43t
Снар	ter 5		
TUR	BINE II	NTERNAL COOLING WITH ROTATION	43'
5.1	ROTATIO	ONAL EFFECTS ON COOLING	43
5:2	SMOOT	H-WALL COOLANT PASSAGE	43
	5.2.1	Effect of Rotation on Flow Field	43
	5.2.2	Effect of Rotation on Heat Transfer	44
		5.2.2.1 Effect of Rotation Number	44
		5.2.2.2 Effect of Density Ratio	4 :
		5.2.2.3 Combined Effects of Rotation	r
		Number and Density Ratio	4

		•	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 1		
~	- 2		
		-	

Снар	ter 6				
EXI	PERIM	ENTAL METHODS	531		
6.1	INTRODUCTION				
6.2	HEAT-	TRANSFER MEASUREMENT TECHNIQUES	531		
	6.2.1	Introduction	531		
	6.2.2	Heat Flux Gauges	532		
	6.2.3	Thin-Foil Heaters with Thermocouples	535		
	6.2.4	Copper Plate Heaters with Thermocouples	538		
	6.2.5	Transient Technique	539		
6.3	MASS	TRANSFER ANALOGY TECHNIQUES	540		
	6.3.1	Introduction	540		
	6.3.2	Naphthalene Sublimation Technique	540		
	6.3.3	Foreign-Gas Concentration Sampling Technique	543		
	6.3.4	Swollen-Polymer Technique	545		
	6.3.5	Ammonia-Diazo Technique	546		
	6.3.6	Pressure-Sensitive Paint (PSP) Techniques	547		
6.4	OPTIC	CAL TECHNIQUES	548		
	6.4.1	Introduction	54:		
	6.4.2	Infrared Thermography	54		
1	6.4.3	Thermographic Phosphors	55		
6.5	LIQUI	D CRYSTAL THERMOGRAPHY	55		
	6.5.1	Steady-State Yellow-Band Tracking Technique	55		
	6.5.2	Steady-State HSI Technique	55		
	6.5.3	Transient HSI Technique	5ť		
	6.5.4	Transient Single-Color Capturing Technique	5:		
6.6	FLOW	AND THERMAL FIELD MEASUREMENT			
	TECH	NIQUES	5		
	6.6.1	Introduction	5		
	6.6.2	Five-Hole Probe/Thermocouples	5		
0	6.6.3	Hot-Wire/Cold-Wire Anemometry	5		
11	6.6.4	Laser Doppler Velocimetry (LDV)	Ę		
	6.6.5	Particle Image Velocimetry	!		
	6.6.6	Laser Holographic Interferometry	;		
	6.6.7	Surface Visualization			

6.7 CLOSURE

## xiv

Снар	PTER 8	
FIN	AL REMARKS	637
8.1	TURBINE HEAT TRANSFER AND FILM COOLING	637
8.2	TURBINE INTERNAL COOLING WITH ROTATION	637
8.3	TURBINE EDGE HEAT TRANSFER AND COOLING	638
8.4	CLOSURE	638

----

INDEX

r

10

639

···· . .