STRESSES IN PLATES AND SHELLS

SECOND EDITION

Ansel C. Ugural New Jersey Institute of Technology

Boston • Burr Ridge, IL • Dubuque, IA • Madison, WI New York • San Francisco • St. Louis Bangkok • Bogotá • Caracas • Lisbon • London • Madrid Mexico City • Milan • New Delhi • Seoul • Singapore • Sydney Taipei • Toronto

CONTENTS

LIST OF SYMBOLS xiii

PREFACE xvii

PART

FUNDAMENTALS 1

Chapter 1

BASIC CONCEPTS 3

1.1	Introduction	3
-----	--------------	---

- 1.2 Methods of Analysis 4
- 1.3 Conditions of Equilibrium 5
- 1.4 Stress Defined 6
- 1.5 Internal-Force Resultants 9
- 1.6 Differential Equations of Equilibrium 11
- 1.7 Transformation of Stress 13
- 1.8 Strain Defined 16
- 1.9 Components of Strain, Conditions of Compatibility 18
- 1.10 Large Strains 19
- 1.11 Transformation of Strain 20
- 1.12 Engineering Materials 21
- 1.13 Stress-Strain Diagrams 22
- 1.14 Hooke's Law, Poisson's Ratio 23
- 1.15 Rational Design Procedure 26
- 1.16 Factor of Safety 28 References 29
 - Problems 30

Chapter 2

STRESS ANALYSIS OF SIMPLE MEMBERS 35

2.1	Introduction	35

- 2.2 Axially Loaded Members 36
- 2.3 Stress Concentration Factors 39
- 2.4 Torsion of Circular Bars 40

2.5	Stresses in Beams 42
2.6	Deflection of Beams by Integration 46
2.7	Beam Deflections by Superposition 50
2.8	Thin-Walled Pressure Vessels 51
2.9	Yield and Fracture Criteria 53
2.10	Strain Energy 59
2.11	Castigliano's Theorem 61
1	References 64
	Problems 64

PART II

PLATES 69

Chapter 3

ELEMENTS OF PLATE-BENDING THEORY 71

- 3.1 Introduction 71
- 3.2 General Behavior of Plates 72
- 3.3 Strain-Curvature Relations 74
- 3.4 Stresses and Stress Resultants 76
- 3.5 Equations for Transformation of Moment 79
- 3.6 Variation of Stress within a Plate 80
- 3.7 The Governing Equation for Deflection of Plates 82
- 3.8 Boundary Conditions 84
- 3.9 Exact Theory of Plates 87
- 3.10 Methods for Solution of Plate Deflections 89
- 3.11 Strain Energy of Plates 95
- 3.12 Energy Methods in Theory of Plates 96
- *3.13 Natural Frequencies of Plates by Energy Method 98 References 99 Problems 100

Chapter 4

CIRCULAR PLATES 105

- 4.1 Introduction 105
- 4.2 Basic Relations in Polar Coordinates 105
- 4.3 The Axisymmetrical Bending 109
- 4.4 Equations of Equilibrium for Axisymmetrically Loaded Circular Plates 110
- 4.5 Uniformly Loaded Circular Plates 112
- *4.6 Effect of Shear on the Plate Deflection 115
 - 4.7 Local Stresses at the Point of Application of a Concentrated Load 1
 - 4.8 Circular Plates under a Concentrated Load at the Center 117

CONTENTS

- 4.9 Annular Plates with Simply Supported Outer Edges 121
- 4.10 Deflection and Stress by Superposition 124
- 4.11 The Ritz Method Applied to Bending of Circular Plates 129
- 4.12 Asymmetrical Bending of Circular Plates 132
- *4.13 Deflection by the Reciprocity Theorem 134 References 135 Problems 136

Chapter 5

RECTANGULAR PLATES 141

5.1	Introduction 141
5.2	Navier's Solution for Simply Supported Rectangular Plates 141
5.3	Simply Supported Rectangular Plates under Various Loadings 144
5.4	Lévy's Solution for Rectangular Plates 149
5.5	Lévy's Method Applied to Nonuniformly Loaded Rectangular Plates 158
5.6	Rectangular Plates under Distributed Edge Moments 162
5.7	Method of Superposition Applied to Bending of Rectangular
	Plates 165
*5.8	The Strip Method 168
*5.9	Simply Supported Continuous Rectangular Plates 171
*5.10	Rectangular Plates Supported by Intermediate Columns 174
5.11	Rectangular Plates on Elastic Foundation 177
5.12	The Ritz Method Applied to Bending of Rectangular Plates 179
	References 185
	Problems 185

Chapter (

PLATES OF VARIOUS GEOMETRICAL FORMS 193

- 6.1 Introduction 193
- *6.2 Method of Images 193
- 6.3 Equilateral Triangular Plate with Simply Supported Edges 196
- 6.4 Elliptical Plates 198
- 6.5 Sector-Shaped Plates 200
- *6.6 Stress Concentration around Holes in a Plate 203 References 205 Problems 206

Chapter 7

NUMERICAL METHODS 209

7.1	Introduction	209

- 7.2 Finite Differences 210
- 7.3 Solution of the Finite Difference Equations 214

viii

*7.4	Plates with Curved Boundaries 224
*7.5	The Polar Mesh 227
*7.6	The Triangular Mesh 228
7.7	The Finite Element Method 230
7.8	Properties of a Finite Element 231
7.9	Formulation of the Finite Element Method 233
7.10	Beam Element 236
7.11	Triangular Finite Element 239
7.12	Rectangular Finite Element 244
	References 248
	Problems 250

Chapter 8

ANISOTROPIC PLATES 253

8.1	Introduction 253
8.2	Basic Relationships 254
8.3	Determination of Rigidities 255
8.4	Rectangular Orthotropic Plates 256
8.5	Elliptic and Circular Orthotropic Plates 262
8.6	Deflection by the Energy Method 263
*8.7	Plates of Isotropic Multilayers 266
8.8	The Finite Element Solution 268
8.9	A Typical Layered Orthotropic Plate 270
8.10	Laminated Composite Plates 273
	References 278
	Problems 279

Chapter 9

PLATES UNDER COMBINED LATERAL AND IN-PLANE LOADS 281

- 9.1 Introduction 281
- 9.2 Governing Equation for the Deflection Surface 281
- 9.3 Buckling of Plates 284
- 9.4 Application of the Energy Method 288
- *9.5 The Finite Difference Solution 293
- 9.6 Plates with Small Initial Curvature 296
- *9.7 Bending to a Cylindrical Surface 298 References 302 Problems 302

Chapter 10

LARGE DEFLECTIONS OF PLATES 305

- 10.1 Introduction 305
- 10.2 Plate Behavior When Deflections Are Large 305

10.3	Comparison of Small- and Large-Deflection Theories 306
10.4	General Equations for Large Deflections of Plates 310
10.5	Deflections by the Energy Method 312
10.6	The Finite Element Solution 316
	References 318
	Problems 319

Chapter 11

THERMAL STRESSES IN PLATES 321

11.1	Introduction 321
11.2	Stress, Strain, and Displacement Relations 322
11.3	Stress Resultants 323
11.4	The Governing Differential Equations 324
11.5	Simply Supported Rectangular Plate Subject to an Arbitrary
	Temperature Distribution 325
11.6	Simply Supported Rectangular Plate with Temperature Distribution
	Varying over the Thickness 327

- 11.7 Analogy Between Thermal and Isothermal Plate Problems 328
- 11.8 Axisymmetrically Heated Circular Plates 330 References 334 Problems 334

PART III

SHELLS 337

Chapter 12

MEMBRANE STRESSES IN SHELLS 339

12.1	General Behavior and Common Theories of Shells	339

- 12.2 Load Resistance Action of a Shell 340
- 12.3 Geometry of Shells of Revolution 343
- 12.4 Symmetrically Loaded Shells of Revolution 344
- 12.5 Some Typical Cases of Shells of Revolution 346
- 12.6 Axially Symmetric Deformation 355
- 12.7 Asymmetrically Loaded Shells of Revolution 357
- *12.8 Shells of Revolution under Wind Loading 359
- 12.9 Cylindrical Shells of General Shape 361
- *12.10 Folded Structures 366
- *12.11 Shells of General Form 367
- *12.12 Breakdown of Elastic Action in Shells 371 References 372 Problems 373

406

Chapter 13

BENDING STRESSES IN SHELLS 381

13.1	Introduction 381
13.2	Shell Stress Resultants 381
13.3	Force, Moment, and Displacement Relations 383
13.4	Compound Stresses in a Shell 385
13.5	Strain Energy in the Bending and Stretching of Shells 386
13.6	Axisymmetrically Loaded Circular Cylindrical Shells 386
13.7	A Typical Case of the Axisymmetrically Loaded Cylindrical
	Shell 390
13.8	Shells of Revolution under Axisymmetrical Loads 393
13.9	Governing Equations for Axisymmetrical Displacements 396
13.10	Spherical Shells under Axisymmetrical Load 398
13.11	Comparison of Bending and Membrane Stresses 400
*13.12	Simplified Theory of Spherical Shells under Axisymmetrical
	Load 401
13.13	The Finite Element Representations of Shells of General Shape 405
13.14	The Finite Element Solution of Axisymmetrically Loaded Shells 40
	References 408
	Problems 409

Chapter 14

APPLICATIONS TO PIPES, TANKS, AND PRESSURE VESSELS 411

- 141 Introduction 411
- 14.2Pipes Subjected to Edge Forces and Moments 412
- Reinforced Cylinders 415 14.3
- 14.4 Cylindrical Tanks 418
- 14.5 Thermal Stresses in Cylinders 420
- Thermal Stresses in Compound Cylinders 14.6 423
- 14.7 Discontinuity Stresses in Pressure Vessels 426
- Cylindrical Vessel with Hemispherical Heads 14.8 427
- 14.9 Cylindrical Vessel with Ellipsoidal Heads 429
- 14.10 Cylindrical Vessel with Flat Heads 430
- Design Formulas for Conventional Pressure Vessels 432 *14.11 References 433 Problems 434

Chapter 15

CYLINDRICAL SHELLS UNDER GENERAL LOADS 439

- 15.1Introduction 439
- 15.2Differential Equations of Equilibrium 440
- Kinematic Relationships 15.3441

CONTENTS

15.4	The Governing Equations for Deflections 443
*15.5	Approximate Relations 444
15.6	A Typical Case of Asymmetrical Loading 446
15.7	Curved Circular Panels 449
*15.8	A Simple Theory of Bending of Curved Circular Panels 450
*15.9	Curved Circular Panels with Ends Simply Supported and Straight
,	Edges Free 453
15.10	Inextensional Deformations 457
15.11	A Typical Layered Orthotropic Cylindrical Shell 460
15.12	Laminated Composite Cylindrical Shells 463
*15.13	Symmetrical Buckling under Uniform Axial Pressure 465
15.14	Nonsymmetrical Buckling under Uniform Axial Compression 468
	References 471
	Problems 472

APPENDICES

Appendix A

FOURIER SERIES EXPANSIONS 475

A.1	Single Fourier Series 475
A.2	Half-Range Expansions 477
A.3	Double Fourier Series 479

Appendix B

TABLES481

B.1	Conversion Factors: SI Units to U.S. Customary Units	481
B.2	SI Unit Prefixes 482	
B.3	Typical Properties for Some Common Materials 483	
B.4	Properties of Common Areas 484	
B.5	Beam Deflections and Slopes 485	
B.6	Restrained Beam Reactions and Deflections 486	
7		

Answers to Selected Problems 487

NAME INDEX 491

SUBJECT INDEX 495