## Introduction to Nanophotonics

a subset

Sergey V. Gaponenko

National Academy of Sciences, Belarus



3/10

Contents

| Preface p                                                                     |    |
|-------------------------------------------------------------------------------|----|
| Notations and acronyms                                                        | xv |
| 1 Introduction                                                                | 1  |
| 1.1 Light and matter on a nanometer scale                                     | 1  |
| 1.2 What is nanophotonics?                                                    | 2  |
| 1.3 Where are the photons in nanophotonics and in this book?                  | 3  |
| References                                                                    | 4  |
| Part I Electrons and electromagnetic waves                                    |    |
|                                                                               |    |
| 2 Basic properties of electromagnetic waves and quantum particles             | 9  |
| 2.1 Wavelengths and dispersion laws                                           | 9  |
| 2.2 Density of states                                                         | 13 |
| 2.3 Maxwell and Helmholtz equations                                           | 16 |
| 2.4 Phase space, density of states and uncertainty relation                   | 18 |
| 2.5 Wave function and the Schrödinger equation                                | 20 |
| 2.6 Quantum particle in complex potentials                                    | 22 |
| Problems                                                                      | 32 |
| References                                                                    | 34 |
| 3 Wave optics versus wave mechanics I                                         | 35 |
| 3.1 Isomorphism of the Schrödinger and Helmholtz equations                    | 35 |
| 3.2 Propagation over wells and barriers                                       | 37 |
| 3.3 Dielectric function of free electron gas and optical properties of metals | 51 |
| 3.4 Propagation through a potential barrier: evanescent waves and tunneling   | 54 |
| 3.5 Resonant tunneling in quantum mechanics and in optics                     | 65 |
| 3.6 Multiple wells and barriers: spectral splitting                           | 70 |
| 3.7 Historical comments                                                       | 73 |
| Problems                                                                      | 76 |
| References                                                                    | 77 |
| 4 Electrons in periodic structures and quantum confinement effects            | 79 |
| 4.1 Bloch waves                                                               | 79 |
| 4.2 Reciprocal space and Brillouin zones                                      | 84 |

علقج

|   | 4.3  | Electron band structure in solids                                        | 86  |
|---|------|--------------------------------------------------------------------------|-----|
|   | 4.4  | Quasiparticles: holes, excitons, polaritons                              | 89  |
|   | 4.5  | Defect states and Anderson localization                                  | 93  |
|   | 4.6  | Ouantum confinement effects in solids                                    | 97  |
|   | 4.7  | Density of states for different dimensionalities                         | 99  |
|   | 4.8  | Quantum wells, quantum wires and quantum dots                            | 100 |
|   | Prob | lems                                                                     | 107 |
|   | Refe | rences                                                                   | 107 |
| 5 | Sem  | iconductor nanocrystals (quantum dots)                                   | 110 |
|   | 5.1  | From atom to crystal                                                     | 110 |
|   | 5.2  | Particle-in-a-box theory of electron-hole states                         | 112 |
|   | 5.3  | Quantum chemical theory                                                  | 118 |
|   | 5.4  | Synthesis of nanocrystals                                                | 120 |
|   | 5.5  | Absorption spectra, electron-hole pair states and many-body effects      | 125 |
|   | 5.6  | Luminescence                                                             | 130 |
|   | 5.7  | Probing the zero-dimensional density of states                           | 133 |
|   | 5.8  | Quantum dot matter                                                       | 133 |
|   | 5.9  | Applications: nonlinear optics                                           | 139 |
|   | 5.10 | Applications: quantum dot lasers                                         | 142 |
|   | 5.11 | Applications: novel luminophores and fluorescent labels                  | 148 |
|   | 5.12 | Applications: electro-optical properties                                 | 155 |
|   | Prob | lems                                                                     | 157 |
|   | Refe | rences                                                                   | 158 |
| 6 | Nan  | oplasmonics I: metal nanoparticles                                       | 166 |
|   | 6.1  | Optical response of metals                                               | 166 |
|   | 6.2  | Plasmons                                                                 | 174 |
|   | 6.3  | Optical properties of metal nanoparticles                                | 179 |
|   | 6.4  | Size-dependent absorption and scattering                                 | 187 |
|   | 6.5  | Coupled nanoparticles                                                    | 191 |
|   | 6.6  | Metal-dielectric core-shell nanoparticles                                | 192 |
|   | Prob | lems                                                                     | 195 |
|   | Refe | rences                                                                   | 196 |
| 7 | Ligh | t in periodic structures: photonic crystals                              | 199 |
|   | 7.1  | The photonic crystal concept                                             | 199 |
|   | 7.2  | Bloch waves and band structure in one-dimensionally periodic structures  | 200 |
|   | 7.3  | Multilayer slabs in three dimensions: band structure and omnidirectional |     |
|   |      | reflection                                                               | 207 |
|   | 7.4  | Band gaps and band structures in two-dimensional lattices                | 210 |
|   | 7.5  | Band gaps and band structure in three-dimensional lattices               | 213 |
|   | 7.6  | Multiple scattering theory of periodic structures                        | 215 |
|   | 7.7  | Translation to other electromagnetic waves                               | 216 |

| Contents |
|----------|
| contents |

|    | 7.8  | Periodic structures in Nature                                            | 217 |
|----|------|--------------------------------------------------------------------------|-----|
|    | 7.9  | Experimental methods of fabrication                                      | 218 |
|    | 7.10 | Properties of photonic crystal slabs                                     | 225 |
|    | 7.11 | The speed of light in photonic crystals                                  | 232 |
|    | 7.12 | Nonlinear optics of photonic crystals                                    | 236 |
|    | Prob | lems                                                                     | 239 |
|    | Refe | rences                                                                   | 240 |
| 8  | Ligh | t in non-periodic structures                                             | 246 |
|    | 8.1  | The 1/L transmission law: an optical analog to Ohm's law                 | 246 |
|    | 8.2  | Coherent backscattering                                                  | 251 |
|    | 8.3  | Towards the Anderson localization of light                               | 253 |
|    | 8.4  | Light in fractal structures                                              | 258 |
|    | 8.5  | Light in quasiperiodic structures: Fibonacci and Penrose structures      | 270 |
|    | 8.6  | Surface states in optics: analog to quantum Tamm states                  | 278 |
|    | 8.7  | General constraints on wave propagation in multilayer structures:        |     |
|    |      | transmission bands, phase time, density of modes and energy localization | 280 |
|    | 8.8  | Applications of turbid structures: Christiansen's filters and            |     |
|    |      | Letokhov's lasers                                                        | 289 |
|    | Prob | lems                                                                     | 290 |
|    | Refe | rences                                                                   | 291 |
| 9  | Phot | tonic circuitry                                                          | 295 |
|    | 9.1  | Microcavities and microlasers                                            | 295 |
|    | 9.2  | Guiding light through photonic crystals                                  | 298 |
|    | 9.3  | Holey fibers                                                             | 303 |
|    | 9.4  | Whispering gallery modes: photonic dots, photonic                        |     |
|    |      | molecules and chains                                                     | 305 |
|    | 9.5  | Propagation of waves and number coding/recognition                       | 309 |
|    | 9.6  | Outlook: current and future trends                                       | 311 |
|    | Prob | lems                                                                     | 312 |
|    | Refe | rences                                                                   | 313 |
| 10 | Tuni | neling of light                                                          | 317 |
|    | 10.1 | Tunneling of light: getting through the looking glass                    | 317 |
|    | 10.2 | Light at the end of a tunnel: problem of superluminal propagation        | 320 |
|    | 10.3 | Scanning near-field optical microscopy                                   | 330 |
|    | Prob | lems                                                                     | 334 |
|    | Refe | rences                                                                   | 334 |
| 11 | Nan  | oplasmonics II: metal-dielectric nanostructures                          | 336 |
|    | 11.1 | Local electromagnetic fields near metal nanoparticles                    | 336 |
|    | 11.2 | Optical response of a metal-dielectric composite beyond                  |     |
|    |      | Maxwell-Garnett theory                                                   | 341 |

|    | 11.3     | Extraordinary transparency of perforated metal films  | 344 |
|----|----------|-------------------------------------------------------|-----|
|    | 11.4     | Metal-dielectric photonic crystals                    | 346 |
|    | 11.5     | Nonlinear optics with surface plasmons                | 348 |
|    | 11.6     | Metal nanoparticles in a medium with optical gain     | 350 |
|    | 11.7     | Metamaterials with negative refractive index          | 353 |
|    | 11.8     | Plasmonic sensors                                     | 361 |
|    | 11.9     | The outlook                                           | 363 |
|    | Problems |                                                       | 363 |
|    | Refer    | ences                                                 | 364 |
| 12 | Wave     | e optics versus wave mechanics II                     | 368 |
|    | 12.1     | Transfer of concepts and ideas from quantum theory of |     |
|    |          | solids to nanophotonics                               | 368 |
|    | 12.2     | Why quantum physics is ahead                          | 370 |
|    | 12.3     | Optical lessons of quantum intuition                  | 370 |
|    | Problems |                                                       | 372 |
|    | Refer    | ences                                                 | 373 |
|    |          |                                                       |     |

## Part II Light-matter interaction in nanostructures

| 13 | Light                                                                                | <ul> <li>matter interaction: introductory quantum electrodynamics</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                     | 377                                                                       |
|----|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|    | 13.1                                                                                 | Photons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 377                                                                       |
|    | 13.2                                                                                 | Wave-particle duality in optics                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 381                                                                       |
|    | 13.3                                                                                 | Electromagnetic vacuum                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 382                                                                       |
|    | 13.4                                                                                 | The Casimir effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 384                                                                       |
|    | 13.5                                                                                 | Probability of emission of photons by a quantum system                                                                                                                                                                                                                                                                                                                                                                                                                                           | 385                                                                       |
|    | 13.6                                                                                 | Does "Fermi's golden rule" help to understand                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |
|    |                                                                                      | spontaneous emission?                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 389                                                                       |
|    | 13.7                                                                                 | Spontaneous scattering of photons                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 390                                                                       |
|    | Proble                                                                               | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 392                                                                       |
|    | Refere                                                                               | ences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 392                                                                       |
|    |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |
| 14 | Densi                                                                                | ty of states effects on optical processes in mesoscopic structures                                                                                                                                                                                                                                                                                                                                                                                                                               | 395                                                                       |
| 14 | <b>Densi</b><br>14.1                                                                 | ty of states effects on optical processes in mesoscopic structures<br>The Purcell effect                                                                                                                                                                                                                                                                                                                                                                                                         | <b>395</b><br>396                                                         |
| 14 | <b>Densi</b><br>14.1<br>14.2                                                         | ty of states effects on optical processes in mesoscopic structures<br>The Purcell effect<br>An emitter near a planar mirror                                                                                                                                                                                                                                                                                                                                                                      | <b>395</b><br>396<br>400                                                  |
| 14 | <b>Densi</b><br>14.1<br>14.2<br>14.3                                                 | ty of states effects on optical processes in mesoscopic structures<br>The Purcell effect<br>An emitter near a planar mirror<br>Spontaneous emission in a photonic crystal                                                                                                                                                                                                                                                                                                                        | <b>395</b><br>396<br>400<br>401                                           |
| 14 | <b>Densi</b><br>14.1<br>14.2<br>14.3<br>14.4                                         | ty of states effects on optical processes in mesoscopic structures<br>The Purcell effect<br>An emitter near a planar mirror<br>Spontaneous emission in a photonic crystal<br>Thin layers, interfaces and stratified dielectrics                                                                                                                                                                                                                                                                  | <b>395</b><br>396<br>400<br>401<br>404                                    |
| 14 | <b>Densi</b><br>14.1<br>14.2<br>14.3<br>14.4<br>14.5                                 | ty of states effects on optical processes in mesoscopic structures<br>The Purcell effect<br>An emitter near a planar mirror<br>Spontaneous emission in a photonic crystal<br>Thin layers, interfaces and stratified dielectrics<br>Possible subnatural atomic linewidths in plasma                                                                                                                                                                                                               | <b>395</b><br>396<br>400<br>401<br>404<br>407                             |
| 14 | <b>Densi</b><br>14.1<br>14.2<br>14.3<br>14.4<br>14.5<br>14.6                         | ty of states effects on optical processes in mesoscopic structures<br>The Purcell effect<br>An emitter near a planar mirror<br>Spontaneous emission in a photonic crystal<br>Thin layers, interfaces and stratified dielectrics<br>Possible subnatural atomic linewidths in plasma<br>Barnett-Loudon sum rule                                                                                                                                                                                    | <b>395</b><br>396<br>400<br>401<br>404<br>407<br>408                      |
| 14 | <b>Densi</b><br>14.1<br>14.2<br>14.3<br>14.4<br>14.5<br>14.6<br>14.7                 | ty of states effects on optical processes in mesoscopic structures<br>The Purcell effect<br>An emitter near a planar mirror<br>Spontaneous emission in a photonic crystal<br>Thin layers, interfaces and stratified dielectrics<br>Possible subnatural atomic linewidths in plasma<br>Barnett–Loudon sum rule<br>Local density of states: operational definition and conservation law                                                                                                            | <b>395</b><br>396<br>400<br>401<br>404<br>407<br>408<br>410               |
| 14 | <b>Densi</b><br>14.1<br>14.2<br>14.3<br>14.4<br>14.5<br>14.6<br>14.7<br>14.8         | ty of states effects on optical processes in mesoscopic structures<br>The Purcell effect<br>An emitter near a planar mirror<br>Spontaneous emission in a photonic crystal<br>Thin layers, interfaces and stratified dielectrics<br>Possible subnatural atomic linewidths in plasma<br>Barnett–Loudon sum rule<br>Local density of states: operational definition and conservation law<br>A few hints towards understanding local density of states                                               | <b>395</b><br>396<br>400<br>401<br>404<br>407<br>408<br>410<br>411        |
| 14 | <b>Densi</b><br>14.1<br>14.2<br>14.3<br>14.4<br>14.5<br>14.6<br>14.7<br>14.8<br>14.9 | ty of states effects on optical processes in mesoscopic structures<br>The Purcell effect<br>An emitter near a planar mirror<br>Spontaneous emission in a photonic crystal<br>Thin layers, interfaces and stratified dielectrics<br>Possible subnatural atomic linewidths in plasma<br>Barnett–Loudon sum rule<br>Local density of states: operational definition and conservation law<br>A few hints towards understanding local density of states<br>Thermal radiation in mesoscopic structures | <b>395</b><br>396<br>400<br>401<br>404<br>407<br>408<br>410<br>411<br>413 |

تلاج

xi

2.50

| 1     | 4.11 Directional emission and scattering of light defined by partial |     |
|-------|----------------------------------------------------------------------|-----|
|       | density of states                                                    | 416 |
| Р     | roblems                                                              | 419 |
| R     | References                                                           | 419 |
| 15 L  | ight-matter states beyond perturbational approach                    | 424 |
| 1     | 5.1 Cavity quantum electrodynamics in the strong coupling regime     | 424 |
| 1     | 5.2 Single-atom maser and laser                                      | 428 |
| 1     | 5.3 Light-matter states in a photonic band gap medium                | 429 |
| 1     | 5.4 Single photon sources                                            | 431 |
| Р     | roblems                                                              | 433 |
| F     | References                                                           | 433 |
| 16 P  | lasmonic enhancement of secondary radiation                          | 436 |
| 1     | 6.1 Classification of secondary radiation                            | 436 |
| 1     | 6.2 How emission and scattering of light can be enhanced             | 437 |
| 1     | 6.3 Local density of states in plasmonic nanostructures              | 439 |
| 1     | 6.4 "Hot spots" in plasmonic nanostructures                          | 441 |
| 1     | 6.5 Raman scattering enhancement in metal-dielectric nanostructures  | 444 |
| 1     | 6.6 Luminescence enhancement in metal-dielectric nanostructures      | 447 |
| P     | roblems                                                              | 452 |
| F     | References                                                           | 452 |
| Auth  | or index                                                             | 455 |
| Subie | ect index                                                            | 458 |

..