Contents

Vol. 1: Basic Concepts, Columns, Beams and Plates

Preface xv

Abbreviated Contents of Vol. 2: Shells, Built-up Structures and Additional Topics

1 **Introduction**

1.1 Experiments as Essential Links in Structural Mechanics 1

1.2 The Role of Experiments in Structural Stability 3

1.3 Motivation for Experiments 5

1.4 Bridging Gaps Between Disciplines 9

References 11

2 **Concepts of Elastic Stability**

2.1 Physical Concepts – Types of Observed Behavior and Their Meaning 15

2.1.1 Instability of Columns 16

2.1.2 Instability of Plates 18

2.1.3 Instability of Columns with Compound Cross-Sections 21

2.1.4 Effect of Modal Coupling 25

2.1.5 Buckling of Frames 28

2.1.6 Lateral Buckling of Beams 32

2.1.7 Instability due to Patch Loading 36

2.1.8 Buckling of Beam-Columns 39

2.1.9 Buckling of Rings and Arches 41

2.1.10 Buckling of Shallow Arches 45

2.1.11 Buckling of Circular Cylindrical Shells 50

 a. Axial Compression 53

 b. Combined External Pressure and Axial Compression 57

 c. Combined Torsion and Axial Compression 59

 d. Combined Bending and Axial Compression 63
2.1.12 Buckling of Shells of Revolution 66
 a. Externally Pressurized Shallow Spherical Caps 69
 b. Toroidal Shell Segments under External Pressure
 \(\rho = -\rho_e \) 72
 c. Toroidal Segments under Axial Tension 77
 d. Domed (torispherical) End-Closures under Internal Pressure 78

2.1.13 Influence of Nonlinear Effects 80
 a. Axially Compressed Cylindrical Shells 81
 b. Bending of Cylinders - Ovalization of the Cross-Section 84
 c. Plastic Buckling 88

2.2 Mathematical Models for Perfect Structures 94

2.2.1 Static Versus Kinematic Approach 95

2.2.2 Approximate Solutions of Bifurcation Problems 101
 a. The Rayleigh–Ritz Method 102
 b. Galerkin's Method 106

2.2.3 Computational Tools for Bifurcation Problems 110
 a. The BOSOR-4 Branched Complex Shell of Revolution Code 111
 b. Finite Element Formulation of Bifurcation Problems 121

References 124

3 Postbuckling Behavior of Structures 131

3.1 Introduction 131

3.2 Asymptotic Imperfection Sensitivity Analysis 134
 3.2.1 Initial Postbuckling Behavior of Columns 136
 3.2.2 Initial Postbuckling Behavior of Plates 139
 3.2.3 Initial Postbuckling Behavior of Shells 143
 3.2.4 Experimental Verification 148

3.3 Direct Solutions of the Nonlinear Stability Problem 154
 3.3.1 Elastic Postbuckling Behavior of Columns 154
 3.3.2 Plastic Postbuckling Behavior of Columns 156
 3.3.3 Postbuckling Behavior of Plates 160
 a. Perfect Plates 161
 b. Imperfect Plates 166
 3.3.4 Postbuckling Behavior of Circular Cylindrical Shells 167
 a. Perfect Shells 167
 b. Imperfect Shells 170
 3.3.5 Concluding Remarks 175

References 177

4 Elements of a Simple Buckling Test – a Column Under Axial Compression 181

4.1 Columns and Imperfections 181
4.2 Von Kármán's Experiments 182
4.3 The Basic Elements of a Buckling Experiment 185
4.4 Demonstration Experiments 187
4.4.1 University College London Initial Postbuckling Experiments 187
4.4.2 Mechanical Models 189

4.5 Southwell's Method 194
4.5.1 Derivation of Southwell Plot for a Column 194
4.5.2 Application to von Kármán's Columns 195

4.6 Application of the Southwell Method to Columns, Beam Columns and Frames 197
4.6.1 Lundquist Plot 197
4.6.2 Donnell's Applications of the Southwell Plot 198
4.6.3 Applications to Frames and Lateral Buckling of Beams 203
4.6.4 Southwell's Method as a Nondestructive Test Method 206

4.7 Remarks on the Applicability of the Southwell Plot 207

References 213

5 Modeling – Theory and Practice 217

5.1 Mathematical and Physical Modeling 217

5.2 Dimensional Analysis 218
5.2.1 The Procedure in Dimensional Analysis 218
5.2.2 The Buckingham Pi Theorem 219

5.3 Similarity 220
5.3.1 The Concept of Similarity 220
5.3.2 Model Laws 221

5.4 Application to Statically Loaded Elastic Structures 223
5.4.1 Prescribed Loads 223
5.4.2 Displacements and Strains 226

5.5 Loading Beyond Proportional and Elastic Limits 228

5.6 Buckling Experiments 229
5.6.1 Similarity Considerations for Buckling 229
5.6.2 Choice of Materials for Buckling Experiments 230
5.6.3 Elasto-Plastic Buckling 232
5.6.4 Goodier and Thomson's Experiments on Shear Panels 234

5.7 Scaling of Dynamically Loaded Structures 237
5.7.1 Free Vibrations 238
5.7.2 Impact of a Rigid Body on a Structure 238
5.7.3 Scale Model Testing for Impact Loading 241
5.7.4 Plates Subjected to Impulsive Normal Loading 251
5.7.5 Response of Structures to Blast Loading 254

5.8 Scaling of Composite Structures 259
5.8.1 Problems in Scaling of Laminated Composites 259
5.8.2 Scaling Rules for Laminated Beams and Plates 260
5.8.3 Scaling for Strength and Large Deflections of Composites 260
5.8.4 Scaling of Composite Plates 268
5.8.5 Scaling of Composite Cylindrical Shells 270
5.9 Model Analysis in Structural Engineering
5.9.1 Model Analysis as a Design Tool
5.9.2 Model Analysis in Vibration Studies
5.9.3 Buckling Experiments on Models of a Composite Ship Hull Structure
5.9.4 Design of Thames Barrier Gates
5.9.5 Photoelastic Models

5.10 Analogies

References

6 Columns, Beams and Frameworks

6.1 Buckling and Postbuckling of Columns
6.1.1 Column Curves and "Secondary" Effects in Column Experiments
6.1.2 Column Testing
6.1.3 Test Procedures
 a. Preparation of Specimens
 b. Initial Dimensions
 c. Aligning the Column Specimen
 d. Instrumentation
 e. Testing
 f. Presentation of Test Data
 g. Evaluation of Test Results
6.1.4 Columns in Offshore Structures
6.1.5 End-Fitting Effects in Column Tests

6.2 Crippling Strength
6.2.1 Crippling Failure
6.2.2 Gerard's Method for Calculation of Crippling Stresses
6.2.3 Crippling Strength Tests
6.2.4 Crinkly Collapse
6.2.5 Thin-Walled Cold-Formed and Welded Columns

6.3 Torsional-Flexural and Distortional Buckling
6.3.1 Torsional Buckling
6.3.2 Torsional-Flexural Buckling Tests
6.3.3 Distortional Buckling

6.4 Lateral Buckling of Beams
6.4.1 Lateral instability of beams
6.4.2 Prandtl's Lateral Buckling Experiments
6.4.3 Other Early Lateral Buckling Tests
6.4.4 Recent Lateral Buckling Investigations

6.5 Interactive Buckling in Columns and Beams
6.5.1 Mode Interaction and Early Studies
6.5.2 Interactive Buckling Experiments

6.6 Beam-Columns
6.6.1 Beam-Columns as Structural Elements
6.6.2 Recent Experiments on Tubular Beam-Columns
6.7 Buckling of Frameworks 367
 6.7.1 Frame instability 367
 6.7.2 Tests on Model Frames 369
 6.7.3 Behavior of Connections 371
 6.7.4 Seismic Loads on Multi-Story Frames 377
 6.7.5 Space Structures 392

References 397

7 Arches and Rings 409
 7.1 Background 409
 7.2 Shallow Arches 410
 7.2.1 Arches Under Concentrated Loads 410
 (a) Circular Arch 420
 (b) Sinusoidal Arch 422
 7.2.2 Arches Under Uniform Pressure Loading 427
 7.2.3 Additional Empirical Investigations 434
 7.3 Rings and High Rise Arches 434
 7.3.1 Rings - Contact Buckling 434
 7.3.2 High Rise Arches 439
 7.4 Lateral Buckling of Arches 440
 7.4.1 Theoretical Background 440
 7.4.2 Experimental Studies 443

References 450

8 Plate Buckling 453
 8.1 Buckling and Postbuckling of Plates 453
 8.1.1 Historical Background 453
 8.1.2 Effective Width 455
 8.1.3 Postbuckling Behavior and "Secondary Buckling" 459
 8.1.4 Influence of Geometric Imperfections 464
 8.1.5 Influence of Residual Stresses 465
 8.2 Experiments on Axially Compressed Plates 470
 8.2.1 The US Bureau of Standards Test Setup 470
 8.2.2 Needle and Roller Bearings and Knife Edges for Simple Supports 473
 8.2.3 The ETH Zurich and US Navy DTMB Plate Buckling Tests 479
 8.2.4 The Cambridge University "Finger" Supports 484
 8.2.5 Other Examples of Simple and Clamped Supports 491
 8.2.6 Loading Systems 498
 8.2.7 Large Test Rigs 503
 8.2.8 Special Loading Systems for Annular Plates 505
 8.2.9 Deflection Measurement 508
 8.2.10 Controlled (Deliberate) Initial Deflections 512
 8.3 Determination of Critical Load and Southwell's Method in Plates 516
 8.3.1 Definition of the Buckling Load in Plates 516
 8.3.2 Southwell's Method in Plates 520
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.3 Pivotal Plots for Plates</td>
<td>528</td>
</tr>
<tr>
<td>8.3.4 More Recent Applications of Southwell Plots and Recommendations</td>
<td>531</td>
</tr>
<tr>
<td>8.3.5 Summary of Direct Methods for Determination of Buckling Loads in Plates</td>
<td>533</td>
</tr>
<tr>
<td>8.4 Experiments on Shear Panels</td>
<td>538</td>
</tr>
<tr>
<td>8.4.1 Buckling and Postbuckling of Shear Panels</td>
<td>538</td>
</tr>
<tr>
<td>8.4.2 Experiments on Plates Subjected to Shear – Picture Frames</td>
<td>542</td>
</tr>
<tr>
<td>8.4.3 Strength Tests on Plate Girders Under Shear</td>
<td>546</td>
</tr>
<tr>
<td>8.4.4 Technion Repeated Buckling Tests on Shear Panels</td>
<td>552</td>
</tr>
<tr>
<td>8.4.5 Aerospace Industrial Test Setups</td>
<td>558</td>
</tr>
<tr>
<td>8.5 Web Crippling</td>
<td>561</td>
</tr>
<tr>
<td>8.5.1 Web Crippling Due to Concentrated or Patch Loads</td>
<td>561</td>
</tr>
<tr>
<td>8.5.2 Web Crippling Tests</td>
<td>564</td>
</tr>
<tr>
<td>8.6 Biaxial Loading</td>
<td>570</td>
</tr>
<tr>
<td>8.6.1 Plates Under Multiple Loading</td>
<td>570</td>
</tr>
<tr>
<td>8.6.2 Biaxial In-Plane Compression Tests</td>
<td>570</td>
</tr>
<tr>
<td>8.7 Guidelines to Modern Plate Buckling Experiments</td>
<td>577</td>
</tr>
<tr>
<td>8.7.1 Guidelines or Ideas for Future Tests</td>
<td>577</td>
</tr>
<tr>
<td>8.7.2 Noteworthy Details in Some Modern Plate Tests</td>
<td>582</td>
</tr>
<tr>
<td>8.7.3 Imperial College London High Stiffness Test Machine</td>
<td>588</td>
</tr>
</tbody>
</table>

References: 591

Author Index to Vol. 1

Subject Index to Vol. 1