The Logical Design of Multiple-Microprocessor Systems

B. A. Bowen and R. J. A. Buhr

Department of Systems Engineering and Computing Science
Carleton University

Prentice-Hall, Inc.
Englewood Cliffs, New Jersey 07632
Table of Contents

Preface ... xi
Acknowledgements ... xiii

Chapter 1

Classical Concepts and Concurrent Systems

1.0 Introduction ... 3
1.1 Preliminary Design Concepts 6
 1.1.0 Introduction ... 6
 1.1.1 Systems Design Issues 6
 1.1.2 Systems Design and Implementation 6
 1.1.3 Systems Description 8
 1.1.4 Systems Partitioning 9
 1.1.5 Hardware Mapping ... 9
 1.1.6 Systems Implementation 9
1.2 Concepts and Components of Concurrent Operating Systems .. 10
 1.2.0 Preliminary Comments 10
 1.2.1 A Process .. 10
 1.2.2 The Producer/Consumer Example — Case 1 12
 1.2.3 Critical Regions — Semaphores 13
 1.2.4 Interprocess Communication 18
 1.2.5 Process Scheduling 18
 1.2.6 Resource Manipulation — Monitors/Kernels 19
 1.2.7 Hardware Considerations 20
1.3 A Description of Concurrent Systems 20
 1.3.0 Some Guidelines .. 20
 1.3.1 Processes .. 23
3.3 Examples of Monitors

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.0</td>
<td>51</td>
</tr>
<tr>
<td>3.3.1</td>
<td>51</td>
</tr>
<tr>
<td>3.3.2</td>
<td>53</td>
</tr>
<tr>
<td>3.3.3</td>
<td>54</td>
</tr>
<tr>
<td>3.3.4</td>
<td>56</td>
</tr>
</tbody>
</table>

3.4 Issues

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.0</td>
<td>57</td>
</tr>
<tr>
<td>3.4.1</td>
<td>58</td>
</tr>
<tr>
<td>3.4.2</td>
<td>59</td>
</tr>
<tr>
<td>3.4.3</td>
<td>62</td>
</tr>
<tr>
<td>3.4.4</td>
<td>62</td>
</tr>
</tbody>
</table>

3.5 Monitor Integrity

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
</tr>
</tbody>
</table>

3.6 Summary

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
</tr>
</tbody>
</table>

3.7 References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
</tr>
</tbody>
</table>

Chapter 4

Hardware — The Inner Circle

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>66</td>
</tr>
<tr>
<td>4.1.0</td>
<td>66</td>
</tr>
<tr>
<td>4.1.1</td>
<td>66</td>
</tr>
<tr>
<td>4.1.2</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>71</td>
</tr>
<tr>
<td>4.2.0</td>
<td>71</td>
</tr>
<tr>
<td>4.2.1</td>
<td>72</td>
</tr>
<tr>
<td>4.2.2</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>80</td>
</tr>
<tr>
<td>4.3.0</td>
<td>80</td>
</tr>
<tr>
<td>4.3.1</td>
<td>80</td>
</tr>
<tr>
<td>4.3.2</td>
<td>86</td>
</tr>
<tr>
<td>4.3.3</td>
<td>94</td>
</tr>
<tr>
<td>4.3.4</td>
<td>95</td>
</tr>
<tr>
<td>4.3.5</td>
<td>95</td>
</tr>
<tr>
<td>4.4</td>
<td>96</td>
</tr>
<tr>
<td>4.4.0</td>
<td>96</td>
</tr>
<tr>
<td>4.4.1</td>
<td>97</td>
</tr>
<tr>
<td>4.4.2</td>
<td>99</td>
</tr>
<tr>
<td>4.4.3</td>
<td>103</td>
</tr>
<tr>
<td>4.4.4</td>
<td>103</td>
</tr>
<tr>
<td>4.5</td>
<td>105</td>
</tr>
<tr>
<td>4.6</td>
<td>107</td>
</tr>
</tbody>
</table>
Table of Contents

7.2.1 Introduction .. 147
7.2.2 Protocols .. 150

7.3 Data Link Control Protocol 151
 7.3.1 Link Initialization 151
 7.3.1.1 A Naive Protocol 152
 7.3.1.2 A First Refinement of the Naive Protocol 153
 7.3.1.3 Second Refinement of the Naive Protocol 153
 7.3.1.4 A Correct Protocol 162
 7.3.1.5 Some Protocol Requirements 162
 7.3.1.6 Other Startup Protocols 164
 7.3.2 Link Operation ... 164
 7.3.2.1 SPAR Protocols 164
 7.3.2.2 A Simple SPAR Protocol 167
 7.3.3 Protocol Requirements 170

B: CHLL Design

7.4 System Architecture ... 173
 7.4.1 Functions and Data Flow 173
 7.4.2 Finding the First Processes 175
 7.4.3 Edge-In Development of an Access Graph 176
 7.4.4 Further Possible Module Splittings 180
 7.4.5 Uniprocessor Efficiency 183
 7.4.6 Responsibilities of Processes 185
 7.4.7 Buffer Management 186
 7.4.8 Link Startup and Restart 193
 7.4.9 Software Pipelining 194
 7.4.10 Final System Architecture 195

7.5 Algorithmic Design of the Major Active Modules 197
 7.5.1 External Specification of the Data Link Monitor 197
 7.5.2 Buffer Deadlock Avoidance 199
 7.5.3 Algorithmic Operation of the Processes 202

7.6 Algorithmic Design of a Passive Module: The Data Link Control Monitor for Link Operation 204

7.7 Frame Transmission/Reception 212
 7.7.1 Flow of Buffers between the ISR & DLC Modules 214
 7.7.2 External Specification of the ISR Module 214
 7.7.3 Operation of the ISR Module 217
 7.7.4 Interrupt Structure 222
 7.7.5 Synchronous versus Asynchronous ISR Modules 221
 7.7.6 External Specifications of the CRC Module 222

C: The Virtual Machine

7.8 The Hardware for the Example System 223
7.9 The Kernel for the Example System 224
Chapter 8

Concurrent High Level Languages

8.0 Introduction ... 228
8.1 General Organization of a Concurrent System 229
8.2 Multi-PL/M ... 230
 8.2.1 Defining Concurrent Components in PL/M 230
 8.2.2 About PL/M ... 233
 8.2.3 Implementation Techniques 233
 8.2.3.1 Monitor Parameters 233
 8.2.3.2 Monitor Scheduling Procedures 234
 8.2.3.3 Naming Conventions 234
 8.2.3.4 Initialization ... 234
 8.2.3.5 Developing and Running a Multi-PL/M System 235
8.3 Multi-Pascal ... 236
 8.3.1 Defining Concurrent Components in Pascal 236
 8.3.2 About Pascal .. 237
 8.3.3 Implementation Techniques 239
8.4 Language Issues .. 241
8.5 References ... 242

Chapter 9

Systems Issues

9.0 Introduction .. 245
9.1 Key Issues ... 245
9.2 Transparency .. 247
 9.2.1 Software Structures 248
 9.2.2 Memory-Coupled Multiprocessor Architectures 252
 9.2.3 Thin-Wire Coupled Architectures and Reliability 257
 9.2.4 Conclusions ... 258
Table of Contents

9.3 Efficiency ... 258
 9.3.1 Queueing Kernels ... 260
 9.3.1.1 Monolithic Queueing Kernels 260
 9.3.1.2 Kernel Classifications 268
 9.3.1.3 Partitioned Kernels (Type 2) 269
 9.3.1.4 Distributed Kernels (Type 3) 275
 9.3.1.5 Improved Methods of Handling CPU Idle Time 280
 9.3.1.6 Concluding Remarks on Queueing Kernels 281
 9.3.2 Polling Kernels .. 282
 9.3.2.1 About Clock Preemption 282
 9.3.2.2 Polling as an Alternative to Queueing 283

9.4 Testing and Debugging ... 286
 9.4.1 Hardware Testing/Debugging 286
 9.4.2 Low Level I/O Testing/Debugging 287
 9.4.3 Kernel Testing/Debugging 287
 9.4.4 CHLL Level Testing/Debugging 288
 9.4.4.1 Internal CHLL Software 288
 9.4.4.2 Testing/Debugging an X.25 Protocol System (due to Brown) 289
 9.4.4.2.1 Phases of Testing 289
 9.4.4.2.2 Instrumentation Software 290
 9.4.4.2.3 Conclusions 294
 9.5 References .. 295

Appendix A

A Proposal for an Efficient Polling Kernel (due to Paquet)

 A.1 Introduction ... 296
 A.2 The Data Structures .. 297
 A.3 The Primitives ... 300
 A.4 An Evaluation ... 305