Analysis and Control of Dynamic Economic Systems

GREGORY C. CHOW

Princeton University

John Wiley & Sons New York • London • Sydney • Toronto

 $\left(\cdot \right)$

Contents

PART 1. ANALYSIS OF DYNAMIC ECONOMIC SYSTEMS

3

1. PROBLEMS OF STOCHASTIC DYNAMIC ECONOMICS

CHAPTER

	1.1	The Subject Matter of this Book in Economics, 3	
	1.2	How to Use this Book, 7	
	1.3	Statics and Dynamics, 8	
	1.4	Comparative Statics and Comparative Dynamics, 10	
	1.5	Stochastic and Comparative Stochastic Dynamics, 12	
	1.6	Forces at Work in a Macroeconometric System, 14	
	1.7	Optimal Control of Stochastic Systems, 15	
	1.8	Chapter Outline of this Book, 16	
2.	ANAL	LYSIS OF LINEAR DETERMINISTIC SYSTEMS	19
	2.1	Homogeneous Linear Difference Equation of First Order, 2	21
	2.2	Higher Order and Multivariate Homogeneous	
		Linear Systems, 21	
	2.3	Characterization of the Solution to a Homogeneous	
		Linear System, 23	
	2.4	Characterization of the Solution Using	
		Canonical Variables, 26	
	2.5	The Case of Complex Roots, 27	
	2.6	A Note on Cosine Functions, 29	
	2.7	Numerical Evaluation of the Solution, 30	
	2.8	A Numerical Example Involving Complex Roots, 32	
		11 Complex Roots, 52	xi
			лі

38

CHAPTER

3 ANALYSIS OF LINEAR STOCHASTIC SYSTEM: TIME DOMAIN

- 3.1 Introduction, 38
- 3.2 First-Order Linear Stochastic Difference Equation, 40
- Covariance Stationary Time Series and Its Autocovariance 3.3 Function, 42
- 3.4* Expected Times Between Mean Crossings and Between Maxima, 44
- Systems of Linear Stochastic Difference Equations, 49 3.5
- Autocovariance Matrix of Stochastic Difference Equations, 51 3.6
- The Autocovariance Matrix Via Canonical Variables, 55 3.7
- A Relation Between Stochastic and Nonstochastic 3.8 Time Series, 56
- 3.9 Periodicity in the Autocovariance Function, 57
- A Numerical Example, 58 3.10
- Treatment of Autocorrelated Residuals, 61 3.11
- 4. ANALYSIS OF LINEAR STOCHASTIC SYSTEMS: FREQUENCY DOMAIN
- 65
 - 4.1 Spectral Density Function Via the Autocovariance Function, 66
 - Spectral Density Functions of a Bivariate System, 70 4.2
 - Cross-Spectral Density Function Via the 4.3 Cross-Correlation Function, 73
 - 4.4 Decomposition of Time Series Data into Periodic Components, 76
 - Decomposition of Theoretical Time Series into 4.5 Periodic Components, 78
 - Equivalence of Two Definitions of Spectral Density, 80 4.6*
 - A Second Definition of Cross-Spectral Density, 82 4.7*
 - 4.8 Gain and Coherence, 85
 - Spectral Density Matrix of Stochastic Difference Equations, 85 4.9
 - 4.10* Spectral Density Matrix in Terms of Canonical Variables, 87
 - 4.11* A Note on Spectral Analysis, 90

95 5. DYNAMIC ANALYSIS OF A SIMPLE MACROECONOMIC MODEL

- 5.1 Stochastic Dynamic Economic Analysis, 95
- Three Important Macroeconomic Hypotheses, 98 5.2
- A Simple Macroeconomic Model, 100 5.3

CHAPTER

- 5.4 First-Differencing and Stability, 104
- 5.5 Mean Paths and Multipliers, 106
- 5.6 Autocovariance Properties of the System, 108
- 5.7 Spectral Properties of Individual Time Series, 111
- 5.8 Cross-Spectral Properties, 114
- 5.9 Economic Implications, 119
- 6. ANALYSIS OF NONSTATIONARY AND NONLINEAR MODELS 122
 - 6.1* Analysis of an Explosive First-Order Autoregression, 122
 - 6.2* Dynamic Properties of Explosive Linear Systems, 125
 - 6.3* The Case of Complex Roots Greater than One in Absolute Value, 130
 - 6.4 Linearizing a Nonlinear System, 131
 - 6.5* Spectral Properties Without Linearizing the Model, 134
 - 6.6 Two Methods for Solving Nonlinear Structural Equations, 136
 - 6.7 Dynamic Properties Through Stochastic Simulations, 138
 - 6.8* Slowly Changing Spectral Densities, 140
 - 6.9 Concluding Remarks, 143

PART 2. CONTROL OF DYNAMIC ECONOMIC SYSTEMS

7. OPTIMAL CONTROL OF KNOWN LINEAR SYSTEMS: LAGRANGE MULTIPLIERS

149

- 7.1 Relation Between Stochastic Dynamic Analysis and Optimal Control, 150
- 7.2 Control Problem for a Linear System and a Quadratic Welfare Function, 152
- 7.3 Two-Part Decomposition of the Optimal Control Problem, 156
- 7.4 Solution of Deterministic Control by Lagrange Multipliers, 157
- 7.5 Role of Mathematical Programming and the Minimum Principle, 161
- 7.6 Solution of Stochastic Control by Lagrange Multipliers, 163
- 7.7 The Combined Solution and the Minimum Expected Loss, 166
- 7.8 The Steady-State Solution, 170
- 7.9 Brief Comments on Related Approaches to Quantitative Economic Policy, 172

CHAPTER

8.	OPTIMAL CONTROL OF KNOWN LINEAR SYSTEMS: DYNAMIC PROGRAMMING 176		
	8.1	Solution to the Linear-Quadratic Control Problem by Dyna Programming, 176	mic
	8.2	Stochastic versus Deterministic Control Problems, 180	
	8.3*	A Control Problem with Observation Errors, 182	
	8.4*	The Kalman Filter, 186	
	8.5*	Some Economic Applications of the Kalman Filter, 191	
	8.6	An Interpretation of Dynamic Programming Solution, 195	
	8.7*	Applications of Dynamic Programming to Microeconomics, 197	
9.	SOME P	PROBLEMS OF MACROECONOMIC POLICY	
	ву ор	TIMAL CONTROL	203
	9.1	Setting Up the Policy Objectives and the Econometric Model, 203	e.
	9.2	Nature of the Optimal Policies, 208	
	9.3	Calculation of Expected Welfare Loss, 212	
	9.4	Measurement of Welfare Tradeoffs, 213	
	9.5	Gain from the Optimal Control Policies, 216	
	9.6	Relative Effectiveness of Monetary versus	
		Fiscal Instruments, 220	
	9.7	Evaluation of Historical Policies, 221	
	9.8	Reference to Other Applications, 223	
10.	CONT	ROL OF UNKNOWN LINEAR SYSTEMS WITHOUT LEARNING	226
	10.1	An Introductory Example Involving Scalar Variables, 226	
	10.2	Optimal Control of Linear Systems with Random Parameters, 228	
	10.3*	Conditional Expectations in Terms of Reduced-Form	
		Parameters, 232	
	10.4*	Mean and Covariance Matrix of Reduced-Form Parameter	s by
		Bayesian Methods, 235	
		An Approximate Solution, 243	
	10.6	Comparison with the Certainty-Equivalent Solution, 247	
11.	CONT	ROL OF UNKNOWN LINEAR SYSTEMS WITH LEARNING	254
	11.1	A Restatement of the Method of Dynamic Programming,	255

CHAPTER

- 11.2 Description of the Method, 257
- 11.3 Comparison with Two Other Approximate Methods, 261
- 11.4 Two Simplified Versions of Method III, 265
- 11.5 Control Solutions for a One-Equation Model, 266
- 11.6 Control Solutions for a Two-Equation Model, 271

12. CONTROL OF NONLINEAR SYSTEMS

- 12.1 Solution of Deterministic Control by Lagrange Multipliers, 280
- 12.2 Solution to Deterministic Control Problem as a Minimization Problem, 285
- 12.3 Gradient Method for Open-Loop Solution to Deterministic Control, 286
- 12.4 Control of Nonlinear Stochastic Systems by Linear Feedback Equations, 289
- 12.5 Control of Nonlinear Stochastic Systems by Open-Loop Policies, 295
- 12.6 Linear Feedback Control Equations by Re-estimating a Linear Model, 297

Ċ

12.7 Summary, 298

BIBLIOGRAPHY

INDEX

301

279