HANDBOOK OF VACUUM SCIENCE AND TECHNOLOGY

Edited by

Dorothy M. Hoffman (deceased)

Bawa Singh

David M. Sarnoff Research Center Princeton, New Jersey

John H. Thomas, III

3M Research Laboratories St. Paul, Minnesota

ACADEMIC PRESS

San Diego London Boston New York Sydney Tokyo Toronto

Contents

(

Prefac	e		xvii
List o	f Cont	ributors	xxi
Part 1	Func and	lamentals of Vacuum Technology Surface Physics	1
1.1	Vacuun	n Nomenclature and Definitions	3
	1.1.1	Basic Definition	3
	1.1.2	Pressure Regions of Vacuum	3
1.2	Gas Pro	operties	8
	1.2.1	Description of Vacuum as a Low-Pressure Gas	8
	1.2.2	Characteristics of a Gas—Basic Definitions	8
	1.2.3	Gas Laws	9
1.3	Molecu	Ilar Processes and Kinetic Theory	11
	1.3.1	General Description	11
	1.3.2	Molecular Motion	12
	1.3.3	Kinetic Theory Derivation of the Gas Laws	14
	1.3.4	Pressure	15
	1.3.5	Molecular Mean Free Path	17
	1.3.6	Number of Impacts with the Chamber Wall	19
	1.3.7	Time to Form a Monolayer	20
	1.3.8	Thermal Transpiration	20
	1.3.9	Coefficient of Thermal Conductivity	-21
	1.3.10	Coefficient of Diffusion	21
1.4	Throug	hput, Pumping Speed, Evacuation Rate, Outgassing Rate,	
	and Le	ak Rate	22
1.5	Gas Flo	W	25
	1.5.1	Nature of Gas Flow	25
	1.5.2	Turbulent Flow	27

ix '

,

	1.5.3	Viscous, Streamline, or Laminar Flow
	1.5.4	Molecular Flow 29
	1.5.5	Flow Relationships
1.6	Conduc	ctance
	1.6.1	Conductance
	1.6.2	Conductances in Parallel
	1.6.3	Conductances in Series
1.7	Flow C	alculations
	1.7.1	Equations for Viscous Flow
	1.7.2	Equations for Molecular Flow
	1.7.3	Knudsen's Formulation
	1.7.4	Clausing Factors
1.8	Surface	Physics and Its Relation to Vacuum Science
	1.8.1	Physical Adsorption or "Adsorption" 44
	1.8.2	Chemisorption
	1.8.3	Sticking Coefficient
	1.8.4	Surface Area
	1.8.5	Surface Adsorption Isotherms 4
	1.8.6	Capillary Action. 44
	1.8.7	Condensation 4
	1.8.8	Desorption Phenomena 49
	1.8.9	Thermal Desorption
	1.8.10	Photoactivation
	1.8.11	Ultrasonic Desorption 5
	1.8.12	Electron- and Ion-Stimulated Desorption
	1.8.13	Gas Release from Surfaces 5-
	Referer	1ces
Part 2	2 Crea	ation of Vacuum
2.1	Techno	logy of Vacuum Pumps — An Overview
	2.1.1	Vacuum Pump Function Basics
	2.1.2	Gas Transport: Throughput 6
	2.1.3	Performance Parameters
	2.1.4	Pumping Speed 6
	2.1.5	Pumpdown Time
-	2.1.6	Ultimate Pressure
	2.1.7	Forevacuum and High-Vacuum Pumping7
	2.1.8	Pump System Relationships
	2.1.9	Crossover from Rough to High-Vacuum Pumps 7
	2.1.10	Pumping System Design
	Referei	nces

2.2	Diaphragm Pumps		
	2.2.1	Introduction: Basics and Operating Principle	84
	2.2.2	State-of-the-Art Design and Manufacturing	87
	2.2.3	Performance and Technical Data	91
	2.2.4	Modular Concept for Specific Application Setups:	
		Standalone Operation.	92
	2.2.5	Diaphragm Pumps as Backing and Auxiliary Pumps	
		in Vacuum Systems	93
	Referen	nces	96
2.3	Vacuum	n Blowers	97
	2.3.1	Introduction	97
	2.3.2	Equipment Description	97
	2.3.3	Blower Operating Principle	100
	2.3.4	Blower Pumping Efficiency	101
	2.3.5	Blower Pumping Speed Calculations.	103
	2.3.6	Power Requirements	104
	2.3.7	Temperature Considerations	106
	2.3.8	Flow and Compression Ratio Control Mechanisms	108
	2.3.9	Liquid-Sealed Blowers	112
	2.3.10	Selected System Arrangements	112
2.4	Vacuur	n Jet Pumps (Diffusion Pumps)	116
	2.4.1	Basic Pumping Mechanism	117
	2.4.2	Pumping Speed	122
	2.4.3	Throughput.	127
	2.4.4	Tolerable Forepressure	128
	2.4.5	Ultimate Pressure	132
	2.4.6	Backstreaming	137
	2.4.7	Other Performance Aspects	144
	Referen	nces	148
2.5	Cryoge	enic Pumps	149
	2.5.1	Introduction	149
	2.5.2	Cryopump Basics	156
	2.5.3	Advanced Control Systems	167
	2.5.4	Cryopump Process Applications	173
	2.5.5	Cryogenic Pumps Specifically for Water Vapor	177
	2.5.6	Comparison of Cryopumps to Other Types of Pumps	179
	2.5.7	Future Developments	181
	Referen	nces	181
2.6	Turbor	nolecular Pumps	183
-	2.6.1	Turbomolecular Pumps (TMP)	183
	2.6.2	Molecular Drag Pumps (MDP)	195
	2.6.3	Combination of Pumps (TMP + MDP)	197

٢

	2.6.4	Evaluation of Combinations of Backing Pumps and TMPs. Etc.	200
	265	The Use of TMP in Applications: Specific Effects	200
	2.0.5	and Demands	208
	266	Avoiding Operational Mistakes	211
	2.0.0 Refere		212
27	Pumps	for Illtra-High Vacuum Applications	214
2.1	271	System Design for Ultra-High Vacuum	215
	2.7.1	The Selection of Pumps for Ultra-High Vacuum	210
	2.7.2	Applications.	216
	2.7.3	Sputter-Ion Pumps	220
	2.7.4	Getter Pumps	242
	Refere	nces	252
Part 7		num Measurements	255
Iaits	ο ναι		255
3.1	The M	easurement of Low Pressures	257
	3.1.1	Overview	258
	3.1.2	Direct Reading Gauges	260
	3.1.3	Indirect Reading Gauges	265
	3.1.4	Calibration of Vacuum Gauges	286
	Refere	nces	288
3.2	Mass A	Analysis and Partial Pressure Measurements	290
	3.2.1	Overview and Applications	290
	3.2.2	Inlet Systems	300
	3.2.3	Ion Generation and Ion Sources.	303
	3.2.4	Ion Separation Analyzers	308
	3.2.5	Detection of Ions	323
	Refere	nces	326
3.3	Practic	cal Aspects of Vacuum System Mass Spectrometers	335
	3.3.1	Historical Insight	335
	3.3.2	Expected Gases in a Vacuum System	336
	3.3.3	The Ion Generation Process	34(
	3.3.4	Techniques for Analysis	351
	3.3.5	Calibration of Vacuum System Mass Spectrometers	364
	3.3.6	Some Applications	370
	Refere	nces	374
3.4	Mass I	Flow Measurement and Control.	376
	3.4.1	General Principles of Mass Flow Measurement	376
	3.4.2	Overview of Thermal Mass Flow Controller Technology	378
	3.4.3	Performance Characteristics	382
	3.4.4	Troubleshooting	386
	Refere	nces	387

Table of	Contents
----------	----------

Part	4 Sys	tems Design and Components	389
4.1	Selecti	on Considerations for Vacuum Valves	391
	4.1.1	Introduction	391
	4.1.2	Valves for Shutoff	391
	4.1.3	Valves for Control	397
	4.1.4	Valve Construction.	398
	4.1.5	Specialty Valves	404
	4.1.6	Installation Considerations for Vacuum Valves	407
	Refere	nces	408
4.2	Flange	and Component Systems	409
	4.2.1	Introduction	409
	4.2.2	Selecting a Flange System	410
	4.2.3	Common Flange Systems	410
	4.2.4	Components with Flanges Attached	425
	Trader	narks	430
	Refere	nces	432
4.3	Magne	tic-Fluid-Sealed Rotary Motion Feedthroughs	433
	4.3.1	Basic Sealing Principle	433
	4.3.2	Application Factors	434
	4.3.3	Impact of Feedthrough on Process	436
	4.3.4	Impact of Process on Feedthrough	437
	4.3.5	Materials Considerations	438
	4.3.6	Application Examples	440
	4.3.7	Comparison to Other Types of Feedthroughs	442
4.4	Viewp	orts	444
	4.4.1	Materials	444
	4.4.2	Mounting Systems and Precautions	445
4.5	Constr	uction Materials	446
	4.5.1	Properties Defining Material Performance	446
	4.5.2	Vacuum Chamber Materials	451
	4.5.3	Special-Purpose Materials	455
	Refere	nces	462
4.6	Demou	untable Seals for Flanges and Valves	463
	4.6.1	Sealing Overview: Polymer and Metal Seals	463
	4.6.2	The Elastomeric and Nonelastomeric Polymers Used	
		in Vacuum Sealing	464
	4.6.3	Metal Seals	474
	Refere	nces	482
4.7	Outgas	ssing of Materials	484
	4.7.1	Relationships Among System Pressure, Pumping Speed,	
		and Outgassing	484

~

	4.7.2	Initial Pumpdown from Atmospheric Pressure	494
	4.7.3	Pressure Vs. Time During Outgassing.	495
	4.7.4	The Outgassing Rate of Elastomers and Plastics	497
	4.7.5	The Outgassing Rate of Metals and Ceramics	501
	4.7.6	The Outgassing Rate of Preconditioned Vacuum	
		Systems After Short Exposure to the Atmosphere	504
	4.7.7	Methods of Decreasing the Outgassing Rate	506
	4.7.8	Measurement of the Outgassing Rate of Materials	507
	Referen	ices	508
4.8	Alumin	um-Based Vacuum Systems	509
	4.8.1	Outgassing	509
	4.8.2	Demountable Seals.	512
~	4.8.3	Cleaning and Surface Finishing	518
	4.8.4	Mechanical Considerations	520
	4.8.5	Thermal Conductivity and Emissivity	536
	4.8.6	Corrosion	538
	4.8.7	Welding Aluminum for Vacuum Applications	541
	Referen	nces	548
4.9	Prepara	tion and Cleaning of Vacuum Surfaces	553
	4.9.1	Surface Modification	554
	4.9.2	External Cleaning	567
	4.9.3	Assembly, Handling, and Storage	587
	4.9.4	In Situ Cleaning	591
	4.9.5	Documentation	599
	4.9.6	Conclusion	601
	Trade N	James	601
	Referen	nces	601
Part 5		uum Applications	607
i art 5	vuc		007
5.1	High-V	acuum-Based Processes: Sputtering	609
	5.1.1	Sputtering and Deposition	611
	5.1.2	Sputter Deposition Technologies	612
	5.1.3	Magnetron Applications	624
	5.1.4	Future Directions in Sputtering	626
	Referen	nces	627
5.2	Plasma	Etching	628
	5.2.1	Introduction	628
	5.2.2	Review of Plasma Concepts Applicable to Etching	
		Reactors	628
	5.2.3	Basic Plasma Etching Requirements	633
	5.2.4	Plasma Diagnostics	641
	5.2.5	Basic Plasma Etch Reactors	643

	5.2.6	Advanced Plasma Etch Reactors
	5.2.7	New Trends
	Refere	nces
5.3	Ion Be	am Technology
	5.3.1	Introduction
	5.3.2	Ion Beam Etching
	5.3.3	Ion Beam Sputter Deposition.
	5.3.4	Ion-Beam-Assisted Deposition
	5.3.5	Ion Beam Direct Deposition
	5.3.6	Conclusion
	Refere	nces
5.4	Pulsed	Laser Deposition
	5.4.1	Introduction
	5.4.2	Pulsed Laser Deposition System
	5.4.3	The Ablation Mechanism.
	5.4.4	Advantages and Limitations
	5.4.5	Materials Survey
	5.4.6	Future Outlook
	Refere	nces
5.5	Plasma	a-Enhanced Chemical Vapor Deposition
	5.5.1	Introduction
	5.5.2	Equipment and Other Practical Considerations
	5.5.3	Process Scaleup
	5.5.4	Conclusion
	Refere	nces
5.6	Comm	on Analytical Methods for Surface and Thin Film
	5.6.1	Introduction
	5.6.2	The Electron Spectroscopies
	5.6.3	Methods Based on Ion Bombardment
	5.6.4	UHV Generation and System Considerations for
		Surface Analysis
	Refere	ences
Part	6 Lar	ge-Scale Vacuum-Based Processes
6.1	Roll-to	p-Roll Vacuum Coating
	6,1.1	Overview of Roll-to-Roll Vacuum Coating
	6.1.2	Typical Products
	6.1.3	Materials and Deposition Processes Commonly Used
		in Roll-to-Roll Coating
	6.1.4	Vacuum Systems for Roll-to-Roll Coating Applications.
	6.1.5	Substrates (Webs).
	6.1.6	Process Control
	U U	

6.1.7	Specific Problems Exhibited by Coatings	784
Referer	ices	787
The Development of Ultra-High-Vacuum Technology for Particle		
Acceler	ators and Magnetic Fusion Devices	789
6.2.1	Introduction	789
6.2.2	Storage Rings and the Need for UHV	790
6.2.3	UHV for Early Storage Rings	793
6.2.4	Storage Ring Vacuum Vessel and Pumping System	
	Developments	796
6.2.5	Cold-Bore Machines	798
6.2.6	Superconducting RF Accelerators	800
6.2.7	The Next-Generation Big Accelerator?	801
6.2.8	The Magnetic Fusion Road Map	801
6.2.9	The Early History of Magnetic Fusion	803
6.2.10	Model C: The First UHV Fusion Device	804
6.2.11	The Russian Revolution in Fusion: Tokamaks	805
6.2.12	Plasma Impurities and Vacuum Technology	806
6.2.13	Toward the Breakeven Demonstrations	808
6.2.14	The Next Step in Fusion	810
Acknowledgments		
Referer	nces	812
	 6.1.7 Referen The De Acceler 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.2.13 6.2.14 Acknow Referent 	 6.1.7 Specific Problems Exhibited by Coatings