Magnetobiology: Underlying Physical Problems

Vladimir N. Binhi

General Physics Institute, Russian Academy of Sciences, Moscow

An Elsevier Science Imprint

San Diego San Francisco New York Boston London Sydney Tokyo

CONTENTS

		Forew	ord	ix	
		Acknowledgements		xi	
		Notat	ions and physical constants	xii	
1	Introduction				
	1.1	An overview of magnetobiological issues			
	1.2	Statis	Statistics		
	1.3	Methodological notes and terms			
		1.3.1	Notation and terms for magnetic fields	17	
	1.4	1.4 Magnetobiological effect			
		1.4.1	Evaluation of the thermal action of eddy currents	19	
		1.4.2	Criterion for classical EMF	22	
		1.4.3	Some limitations on an electric field	24	
		1.4.4	Limitations on plane waves	26	
2	Overview of Experimental Findings				
	2.1	A pot	pourri of experimental work	32	
		2.1.1	Objects studied	32	
		2.1.2	Observables	34	
		2.1.3	EMF ranges	36	
		2.1.4	Field configurations	37	
	2.2	2.2 Biological effects of DC magnetic fields		40	
		2.2.1	Biological effects of weak magnetic fields	41	
		2.2.2	Orientation in the Earth's magnetic field	41	
		2.2.3	Effects of a near-zero magnetic field	43	
-		2.2.4	Biological effects of gradient magnetic fields	47	
	2.3	Biolog	gical effects of AC magnetic fields	50	
		2.3.1	Effects of combined AC–DC fields	51	
		2.3.2	Participation of some ions in magnetoreception	68	
	2.4	Corre	lation of biological processes with GMF variations	79	
		2.4.1	Parameters and indices of the GMF	82	
		2.4.2	Characteristic experimental data	83	
		2.4.3	Physical aspects of bio-GMF correlations	88	
	2.5	Spin effects in magnetobiology			
	2.6	2.6 Effects of low-frequency electric fields			
		2.6.1	Weak electric fields	97	

2.7 F	Biologi	- 1 - ff				
		cal enects of hyperweak heids	107			
3 Theor	Channetical Madala of MPE					
3 1 1100	2.1 Theoretical studies in magnetoreception					
0.1 J		Classification of MBE models	119			
0 2	19	Overview of MBF mechanisms	112			
30 E	under	nental limit of suscentibility to FMF	100			
J.2 I 2	ขามนสา. 2 ว 1	Noise limits of susceptibility of biostructures to FMF	122			
33 (ⁿ homic	while mints of susceptionity of biostructures to EMT	120			
34	Models of biological affects of weak electric fields					
35 9	3.5 Stochastic resonance in magnetobiology					
0.0 2		Stochastic resonance	137			
ป	150	Possible role of stochastic recommend in MBE: "Cain"	140			
บ ว	152	Constraints on the value of detectable signal	140			
ว	154	SR in chemical reactions	142			
36 1	Macros	conic models	1/9			
0.0 1		Orientational effects	140			
3	162	Eddy currents	140			
3	163	Superconductivity at the cellular level	156			
3	161 161	Magnetohydrodynamics	150			
3	165	Magnetony arouy names Macroscopic charged objects	160			
37 (Cvcloti	con resonance in magnetobiology	162			
3	3.7.1	Cyclotron resonance	162			
9	3.7.2	Cyclotron resonance in ion channels	164			
3	3.7.3	Ion cyclotron resonance	166			
3	874	On the bandwidth of a resonance-like response	167			
38 F	Param	etric resonance in magnetobiology	168			
3	881	Parametric resonance of a free particle in an MF	168			
3	382	Parametric resonance in atomic spectroscopy	173			
	3.8.3	Ion parametric resonance	180			
3.9 (Oscilla	tory models	181			
2.0	3.9.1	Quantum oscillator	181			
3	3.9.2	Phase shifts of oscillations in an MF	182			
	3.9.3	Parametric resonance of a classical oscillator	184			
3	3.9.4	Models of the enzyme reaction	. 188			
3.10 N	Magne	tic response of spin particles	188			
3	3.10.1	Weak and strong MF approximations	191			
3.11 I	Free ra	dical reactions	193			
	3.11.1	Geminate recombination	194			
	3.11.2	Representative experiments	199			
3.12	'kT pr	oblem" in magnetobiology	202			
3	3.12.1	Why interference?	208			

4	Interference of Bound Ions			210
	4.1	Disso	ciation of ion-protein complexes in a magnetic field	215
		4.1.1	Model	217
		4.1.2	Ion states in a protein cavity	224
		4.1.3	Width of spectral peaks	227
		4.1.4	Dissociation probability in dimensionless variables	229
	4.2	Non-l	inear reaction of a protein	233
		4.2.1	Estimate of contribution of cubic non-linearity	233
		4.2.2	Contribution of fourth-order non-linearity	235
		4.2.3	Dissociation as a Poisson process	237
	4.3	Interf	erence in pulsed magnetic fields	239
		4.3.1	Parallel pulsed and DC magnetic fields	239
		4.3.2	Interpretation of some experiments with pulsed fields	243
		4.3.3	Amplitude spectra for pulsed modulations of an MF	249
	4.4	Tiltec	d configuration of magnetic fields	253
		4.4.1	Interference in perpendicular fields	255
		4.4.2	Interference for tilted field orientations	265
	4.5	Rotat	tion of an ion–protein complex in a magnetic field	266
		4.5.1	Molecular rotation in AC-DC MF: Amplitude spectrum	267
		4.5.2	Macroscopic rotation in a uniaxial MF: Spectral shifts	271
		4.5.3	A decline in the magnetic vacuum effect	271
	4.6	Influe	ence of an electric field on interference of ions	275
		4.6.1	Interference of ions in a variable electric field	275
		4.6.2	Electric gradients in a biological tissue	280
		4.6.3	Gradients due to electron polarization of ligands	284
	4.7	Interf	erence against the background of a magnetic noise	286
		4.7.1	Agreement with experimental evidence	289
	4.8 Nuclear spins in ion interference mechanisms		ear spins in ion interference mechanisms	292
		4.8.1	Spin-dependent effects in the weak field approximation	293
		4.8.2	Spin patterns in a uniaxial MF	298
	4.9	Comp	parison of theoretical calculations with experiment	302
		4.9.1	Frequency spectra	302
		4.9.2	Amplitude spectra	307
		4.9.3	Spectra of rotating complexes	312
		4.9.4	Pulsed MFs	313
		4.9.5	DC MFs and a magnetic vacuum	316
		4.9.6	Spectra in an electric field	319
	4.10	Heuri	istic MBE probability with various ions involved	323
	4.11	4.11 Limitations on applicability of the ion interference mechanism		
5	Pros	spects	of Electro- and Magnetobiology	332
	5.1	Possi	ble role of liquid water in magnetobiology	332
		5.1.1	Experimental evidence for water memory	333
		5.1.2	Stoichiometry and metastable behavior of water	343

.

	5.2	Biological effects of microwaves and ion interference	353
		5.2.1 Spectral measurements and theoretical concepts	354
		5.2.2 Interference in amplitude-modulated microwave fields	365
		5.2.3 Dissociation in circularly polarized EM fields	370
		5.2.4 Raman scattering at organisms and RF field effects	372
		5.2.5 Radio wave luminescence of water and organisms	375
	5.3	General ideas in electromagnetobiology	377
	5.4	Molecular interfering gyroscope	
		5.4.1 Relaxation time of the molecular gyroscope	381
		5.4.2 Estimating relaxation time from molecular dynamics	383
		5.4.3 Interference of the gyroscope	385
	5.5	Magnetobiological problems to solve	392
6	Addenda		
	6.1	Angular momentum operators	398
	6.2	The Lande factor for ions with a nuclear spin	399
	6.3	Magnetic resonance	
	6.4	Estimation of EF gradients on the cell surface	
	6.5	Davydov soliton	411
	6.6	Fröhlich model of coherent dipole excitations	414
	6.7	Quantization of magnetic flux and Josephson effects	418
Bibliography			424
Au	thor	Index	468
Subject Index			

~